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Algebraic self-similar renormalization in the theory of critical phenomena
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Brasilia, Distrito Federal 70919-970, Brazil
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We consider the method of self-similar renormalization for calculating critical temperatures and critical
indices. An optimized variant of the method for an effective summation of asymptotic series is suggested and
illustrated by several different examples. The advantage of the method is in combining simplicity with high
accuracy.@S1063-651X~97!01004-0#

PACS number~s!: 64.60.Ak, 11.10.Gh, 05.70.Jk, 02.30.Lt
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I. INTRODUCTION

In the theory of critical phenomena one usually obta
critical temperatures and critical indices as expansions
powers of some parameters that, as a rule, are not small
instance, in the Wilsone expansion@1# one hase51. In the
field-theoretical approach@2# the expansion is in powers o
the renormalized coupling constantg>1.4. Such expansions
as is well known, are asymptotic and lead to reasonable
sults only in the low orders. The direct use of higher ord
makes the results only worse@2,3#. When anumber of terms
in a divergent series is known one may invoke resumma
techniques, such as Pade´ and Pade´-Borel ones. However, the
knowledge of only afew first termsdoes not permit one to
use these techniques. Thus, one always confronts the p
lem of how to improve the results of a divergent series h
ing only a few terms.

In the present paper we suggest a solution to this prob
by advancing a method that has the following peculiariti
~i! It permits one to accomplish an effective summation o
divergent series consisting of just a couple of terms, when
other method is applicable.~ii ! It is simple and accurate
providing an accuracy no worse than the sophisticated P´
and Pade´-Borel techniques involving about ten terms wh
they are available.~iii ! It is regular, unambiguously prescrib
ing the way of action. The method suggested is a varian
the method of self-similar renormalization@4–6#. The latter
is a renormalization-group approach using self-similarity
subsequent perturbative terms. Since renormalization gr
is nothing but a kind of a dynamical system, the approa
can be formulated in the language of dynamical theory w
the usage of its powerful techniques as well as of those
control theory@6–8#. Then the number of the approximatio
order plays the role of discrete time. Motion with respect
the latter corresponds to transfer from one approximation
another. This makes it possible to define a dynamical sys
whose trajectory is bijective to the sequence of approxim
tions. Such a dynamical system with discrete time has b
called the approximation cascade; convergence of a sequ
of approximations is equivalent to stability of a dynamic
trajectory. The stability and, respectively, convergence
governed by control functions. The fixed point of a trajecto
defines the sought function.

This method has been successfully applied to the eig
value problem in quantum mechanics@9,10#. Here we con-
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sider the resummation problem for the asymptotic series
the theory of critical phenomena and advance a variant of
method, more appropriate for this problem.

II. METHOD OF SELF-SIMILAR RENORMALIZATION

The complete description of the method with the cor
sponding mathematical foundation can be found in Re
@4–8#. In this section we give only a general scheme of t
method, which is necessary for explaining the variant
suggest.

Suppose we are interested in a functionf (x) of the vari-
able xP(2`,`). Let this function satisfy a complicate
equation that cannot be solved exactly. Assume that
means of perturbation theory we can get a seque
$pk(x)% of perturbative approximationspk(x), where
k50,1,2,. . . , enumerates the approximation order. Usua
perturbation sequences are divergent. To extract a mean
ful result from a divergent sequence one has to involve
so-called resummation techniques. In the method of s
similar renormalization a divergent sequence can be m
convergent by introducing additional functions governi
convergence~see@4–8#!. These functions, because of the
role, are called governing or control functions. Lets be a set
of such control functions entering into a sequen
$Fk(x,s)% obtained by a perturbation algorithm.

In addition to introducing the control functions, the ma
idea of the method of self-similar renormalization is to tre
the passage from one approximation to another as a mo
with respect to the approximation numberk50,1,2,. . . .
This motion is realized in the functional space of the cons
ered function as follows. Define the initial approximation

F0~x,s!5 f ~1!

as an equation for the expansion functionx5x( f ,s). Substi-
tute the latter back toFk , so that

yk~ f ,s![Fk„x~ f ,s!,s…. ~2!

The relation inverse to Eq.~2! is

Fk~x,s!5yk„F0~x,s!,s…. ~3!

Let $yk% form a group of transformations with respect
k50,1,2, . . . . Then the trajectory$yk( f ,s)% of this dynami-
3983 © 1997 The American Physical Society
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3984 55S. GLUZMAN AND V. I. YUKALOV
cal system, according to definitions~2! and ~3!, is bijective,
that is, in one-to-one correspondence to the approxima
sequence$Fk(x,s)%. This dynamical system with discret
time k has been called@7,8# the approximation cascade. Th
attracting fixed point of the cascade trajectory is, by co
struction, bijective to the limit of the approximation s
quence$Fk(x,s)%, that is, it corresponds to the sought fun
tion.

Dealing with continuous time is easier than dealing w
discrete time. Therefore, we embed the approximation c
cade$yk% into an approximation flow$y(t, . . . )% with con-
tinuous time t>0. This implies that the trajectory
$y(t, f ,s)% of the flow passes whent5k50,1,2, . . . , through
all the points of the cascade trajectory,

y~k, f ,s!5yk~ f ,s! ~k50,1,2, . . . !. ~4!

The evolution equation for the flow reads

]

]t
y~ t, f ,s!5v„y~ t, f ,s!…, ~5!

with the right-hand side being the velocity field. The latt
in the language of renormalization-group theory, is oft
called the Gell-Mann–Low orb function.

Integrating the evolution equation~5! from t5k to
t5k* , we get theevolution integral

E
yk

yk11* d f

v~ f ,s!
5k*2k, ~6!

in which yk5y(k, f ,s) and yk11* 5y(k* , f ,s). Before speci-
fying the numbersk and k* in the limits of the evolution
integral, let us note that the differential form~5! of the evo-
lution equation, or its integral form~6!, are equivalent to the
functional relation

y~ t1t8, f ,s!5y„t,y~ t8, f ,s!,s…. ~7!

The latter in physical applications is labeled as the s
similarity relation, which explains the term we use. The se
similarity, in general, can occur with respect to motion ov
different parameters. In our case, this is the motion over
steps of a calculational procedure, the number of steps p
ing the role of effective time.

If there exists an attractive fixed point of th
approximation-flow trajectory, then it is always possible
find a numberk* in the evolution integral~6! such that the
upper limit yk* would correspond to an expression

Fk* ~x,s![y„k* ,F0~x,s!,s…, ~8!

representing, with the desired accuracy, the sought func
f (x). If yk* would be an exact fixed point, then Eq.~8! would
give an exact answer to the problem. However, a fixed p
can be reached only after an infinite number of ste
k→`. For a finite numberk, the limit yk* may represent a
fixed point approximately, because of which it is named
quasi-fixed point. Our aim is to reach the latter as fast
possible, that is, during the minimal time

tk*5min~k*2k!, ~9!
n
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or the minimal number of steps. When there are no ad
tional restrictions, the minimal number of steps counted
k is 1, so that

abs mintk*51. ~10!

In the case when some constraints are imposed on the
tion, the minimal time~9! should correspond to the cond
tional minimum. For instance, if a valuef 0[ f (x0) of the
sought functionf (x) is given for somex0, then we can find
tk* by requiring the trajectory of the approximation casca
to pass through the given pointf 0.

To calculate the evolution integral~6!, we need to define
the velocity field. This can be done by the Euler discretiz
tion of Eq. ~5! yielding the finite-difference form

vk~ f ,s!5yk~ f ,s!2yk21~ f ,s!. ~11!

Substituting Eq.~11! into Eq. ~6!, and using Eq.~3!, we
come to the representation

E
Fk

Fk11* d f

vk11~ f ,s!
5tk* ~12!

for the evolution integral~6!, where Fk5Fk(x,s),Fk11*
5Fk11* (x,s).

Finally, we have to define the sets of the control func-
tions. The role of the latter is to govern the convergence
the approximation sequence. This convergence can be
pressed, in the language of dynamical theory, as the stab
of the cascade trajectory. A useful tool for analyzing stabil
is a set$mk% of the local multipliers

mk~ f ,s!5
]

] f
yk~ f ,s!. ~13!

The inequality

umk~ f ,s!u,1 ~14!

is the condition of local stability at the stepk with respect to
the variation of an initial point f . The equality
umk( f ,s)u51 implies local neutral stability. For a converge
sequence corresponding to a contracting mapping, the co
tion of asymptotic stability is

umk~ f ,s!u→0 ~k→`!. ~15!

The approximation cascade$yk% describes the motion in
the functional space$ f %. To return to the domain$x%, we
must use the inverse transformation~3!. With the help of the
latter we may pass from the multiplier~13! given on the
functional space$ f % to its image

mk~x,s!5mk„F0~x,s!,s… ~16!

being a function ofx. For the image~16!, the same stability
condition as in Eq.~14! can be written as

umk~x,s!u,1. ~17!

According to Eq.~15!, the local multipliers diminish when
approaching an attracting fixed point. That is, the variation
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initial condition f produces less and less effect on the traj
tory as soon as the attractor becomes closer. In other wo
the lower the absolute values of multipliers, the more sta
is the trajectory. Therefore, it is reasonable to define the c
trol functions as those minimizing the absolute values of
local multipliers, making by this the trajectory more stable
each stepk. In this way, a sets of control functions is de-
fined by theprinciple of maximal stability, written as

umk„x,sk~x!…u5minsumk~x,s!u. ~18!

Because of this, the control functionssk(x) defined by the
principle ~18! may be called thestabilizing functionsor sta-
bilizers.

Note that the control functions may be introduced in s
eral ways, as discussed in Refs.@4–10#, however, always
being related to stability conditions and the closeness o
trajectory to an attracting fixed point. In all cases the con
functions are to be defined so that they could accomp
their main job, i.e., to govern the convergence of an appro
mation sequence, which, in terms of dynamical theory
equivalent to stabilizing the cascade trajectory. In the pres
paper we shall use the definition of stabilizers given in~18!.

After the stabilizers are defined, we have to substit
them into the corresponding approximationsFk(x,s) getting

f k~x![Fk„x,sk~x!…. ~19!

This stage can be called thestabilizing renormalizationof a
perturbative sequence.

Then, considering the motion near the renormalized qu
tity ~19! by means of the evolution integral~12!, we obtain

f k* ~x![Fk* „x,sk~x!…. ~20!

This step can be called thedynamical renormalization. And
the whole procedure of the double renormalization~19! and
~20! is named the self-similar renormalization. It is wor
noting that the evolution equation~5! is, generally, nonlinear
and can have several different solutions leading to differ
self-similar approximations~20!. In such a case, to select
physically meaningful solution, we need to involve add
tional conditions as constraints.The role of the latter can
played, e.g., by properties of symmetry, asymptotic prop
ties atx→0 or x→`, sum rules, or other relations contai
ing some known information on the character of the sou
solution. Such additional constraints narrow the set of p
sible solutions to a class with desired properties. Thus,
should always remember from what class we are looking
a solution.

Keeping in mind that we wish to get good accuracy
the sought function, having just a few perturbative ter
available, we need to find some tricks that could effectiv
increase perturbation order. We suggest below one s
trick.

Suppose that there is a sequence of approximat
pk(x) having polynomial structurek showing the order of
the polynomial. This order can be effectively increased
means of the multiplicative transformation

Pk~x,s!5xspk~x!, s>0. ~21!
-
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Then, the order of the expression~21! becomesk1s. The
transformation inverse to Eq.~21!, as is evident, is

pk~x!5x2sPk~x,s!. ~22!

Following the method described above, we consider the
quence$Pk(x,s)% and construct an approximation casca
$yk% whose trajectory$yk( f ,s)% is bijective to $Pk(x,s)%.
Solving the evolution integral~12!, we havePk* (x,s). From
the principle of maximal stability~18! we define the stabiliz-
erssk(x). Substituting these intoPk* (x,s) and invoking the
inverse transformation~22!, we obtain the self-similar ap
proximation

f k* ~x!5x2sk~x!Pk* „x,sk~x!…. ~23!

The multiplicative transformation~21! looks like the most
natural for the case when the perturbative approximati
pk(x) have the form of polynomials or series, genera
speaking, not necessarily in integer powers. The factorxs

effectively increases the approximation order, ands plays
simultaneously the role of stabilizer.

What powers we have to choose, that is, to what effecti
order we need to go is dictated by the principle of maxim
stability selecting the most stable trajectory of the appro
mations cascade. In particular, it may happen thats50, and
we do not need to proceed further, or, vice versa, we m
have to go to the limit ofs→`, thus making allowance for
all approximation orders. In each concrete case, an effec
order that we need to reach depends on how good is
perturbative sequence$pk(x)% we start with and, respec
tively, how much information can be extracted from its fir
terms by means of the double renormalization~19! and~20!.

The optimization by introducing the stabilizing contr
functions into the powers of perturbative polynomials ren
malizes the algebraic structure of the latter. Because of t
and in order to distinguish the suggested optimization pro
dure from other possible variants, we shall call it thealge-
braic self-similar renormalization.

To concretize the procedure, let us write explicitly

pk~x!5 (
n50

k

anx
n, anÞ0, ~24!

as a polynomial of the orderk. Following Eq.~21! define

Pk~x,s!5 (
n50

k

anx
n1s. ~25!

Similarly to Eq.~1!, we have

P0~x,s!5a0x
s5 f , ~26!

from where the expansion function is

x~ f ,s!5S f

a0
D 1/s. ~27!

The definition~2! yields the points

yk~ f ,s!5 (
n50

k

anS f

a0
D n/s11

~28!
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of the approximation-cascade trajectory. For the veloc
field ~11! we get

vk11~ f ,s!5ak11S f

a0
D ~k11!/s11

. ~29!

From the evolution integral~12! we find

Pk11* 5
Pk

$12@~k11!ak11tk* /sa0
~k11!/s11#Pk

~k11!/s%s/~k11! .

~30!

The multiplier ~13! becomes
r
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mk~ f ,s!5 (

n50

k
an
a0

S 11
n

sD S f

a0
D n/s, ~31!

and its image~16! reads

mk~x,s!5 (
n50

k
an
a0

S 11
n

sD xn. ~32!

The principle of maximal stability~18! defines the stabilizers
sk(x), whose explicit expressions depend on the coefficie
an . According to the transformations~21!–~23!, from Eq.
~30! we obtain
f k11* 5
pk~x!

$12@~k11!ak11tk* /sa0
~k11!/s11#xk11pk~x!~k11!/s%s/~k11! , ~33!
x-

m
?
e

bi-
wheresk(x) defines the most stable trajectory. When the
are no additional conditions, the minimal valuetk*51, as in
Eq. ~10!.

As is noted above, it may happen that the most sta
trajectory corresponds tos→`. Let us show how the self
similar approximation~33! simplifies in this case. It is
straightforward to check that the limit of the right side in E
~33!, ass→`, leads to

f k11* ~x!5pk~x!expS ak11

a0
xk11D . ~34!

One may notice that renormalizingpk(x) in Eq. ~34! we can
obtain the recurrence relation

f k11* ~x!5 f k* ~x!expS ak11

a0
xk11D . ~35!

It is possible also to derive several other relations permitt
one to repeat the self-similar renormalization several tim
which is useful when working with high-order terms. How
ever, in what follows we shall limit the consideration of pa
ticular examples by keeping only a few terms of the cor
sponding perturbative series. This is to emphasize that
method suggested allows one to reach good accuracy w
minimal number of perturbative terms, when no other resu
mation technique is applicable. Comparing Eq.~33! with Eq.
~34!, we see that the self-similar renormalization can yie
quite different expressions, from the fractional form to t
exponential one. Below we shall illustrate this by som
simple examples. Each appearing form of an approxima
results from choosing the most stable trajectory by whic
is possible to reach a quasi-fixed-point during the minim
time. Recall in this connection the analogy with classi
mechanics. Notice also that it is possible to follow a traje
tory that is stabilized by imposing additional conditions, su
as asymptotic properties, or prescribing that the trajector
to pass through some given points. In such a case the mo
will not, generally, be accomplished during the absol
minimal time ~10!, but the latter should be defined from th
e
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additional constraints imposed. All these variants will be e
emplified in the following sections.

III. ILLUSTRATION BY SIMPLE EXAMPLES

Suppose that by perturbation theory we have

p1~x!512x, ~36!

with 0<x!1. How could one continue this expression fro
smallx!1 to x>1, when no other information is available

Following the algebraic self-similar renormalization, w
construct the transformed polynomial~21! or ~25!, which for
the case Eq.~36! is

P1~x,s!5xs2x11s. ~37!

According to Eq.~26!, we have the expansion function

x~ f ,s!5 f 1/s. ~38!

Then, Eq.~28! gives

y1~ f ,s!5 f2 f 111/s. ~39!

The velocity field~29! becomes

v1~ f ,s!52 f 111/s. ~40!

The evolution integral~12!, leading to Eq.~30! now yields

P1* ~x,s!5S sx

s1xD
s

. ~41!

For the multiplier~32! we have

m1~x,s!512S 11
1

sD x. ~42!

Minimizing the absolute value of the latter gives the sta
lizer
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s1~x!5
x

12x
, 0<x<1,

s1~x!→`, x>1. ~43!

The self-similar approximation~33! reduces to

f 1* ~x!5S s1~x!

s1~x!1xD
s1~x!

. ~44!

Being interested in the regionx>1 we have to take the limi
s1(x)→`. Therefore, for the self-similar approximation~44!
we obtain

f 1* ~x!5 lim
s→`

S s

s1xD
s

5e2x. ~45!

In the same way, a linear expansion

p1~x!5a01a1x, ~46!

with a0,a1Þ0, derived foruxu!1, can be continued to th
region uxu>ua0 /a1u, where it is represented by the se
similar approximation

f 1* ~x!5a0expS a1a0 xD . ~47!

Thus, we may conclude that the exponential~47! is a general
self-similar representation of a linear expansion~46!, when
no additional constraints are imposed.

Now turn to the case when we construct a self-sim
continuation of Eq.~36! satisfying the prescribed asymptot
behavior

f ~x!}xn, x→`, ~48!

wheren.0 is fixed. Repeating the same procedure as e
lier, we come to Eq.~44!. Comparing the latter with Eq.~48!,
we gets1(x)5n, so that

f 1* ~x!5S n

n1xD
n

. ~49!

Generalizing this result for a linear combination~46! under
the asymptotic condition~48!, we have

f 1* ~x!5a0S na0
na02a1x

D n. ~50!

In this way, one perturbative expansion may have sev
self-similar representations corresponding to different
posed constraints. The form of these representations can
between the exponential, Eq.~47!, and fractional one, Eq
~50!. However, for each given constraint this form
uniquely defined. If no constraints are imposed, the form
the resulting self-similar approximation is governed by t
stabilizers obtained from the principle of maximal stabil
of a self-similar trajectory.

Let us illustrate how accurate is a self-similar approxim
tion and how it is possible to increase the accuracy by c
sidering higher-order terms of a perturbative expansion.
r

r-

al
-
ary

f

-
-
or

this purpose take the function ln(11x) with x>0. We opt for
this function, as an example, since the logarithmic expr
sions are typical of thermodynamic potentials in statisti
mechanics and of generating functionals in field theory.

Write down the three first perturbative approximations
ln(11x) in powers ofx, thinking thatx is small:

p1~x!5x,

p2~x!5x2
x2

2
, ~51!

p3~x!5x2
x2

2
1
x3

3
.

Our aim is to construct self-similar approximations f
ln(11x) in the regionx'1, with expansions~51! that are
valid only for x!1.

Following the standard prescription of the method, defi
the transformed polynomials~25! for those in ~51!, which
gives

P1~x,s!5x11s,

P2~x,s!5x11s2
x21s

2
, ~52!

P3~x,s!5x11s2
x21s

2
1
x31s

3
.

Now, the initial, i.e., the lowest-order, approximation
P1(x,s). Therefore, as in Eq.~26!, from the equation
P1(x,s)5 f we find the expansion function

x~ f ,s!5 f 1/~11s!. ~53!

The points of the approximation cascade trajectory~28! are

y1~ f ,s!5 f ,

y2~ f ,s!5y1~ f ,s!2
1

2
f ~21s!/~11s!, ~54!

y3~ f ,s!5y2~ f ,s!1
1

3
f ~31s!/~11s!.

For the velocity field~21! we get

v2~ f ,s!52
1

2
f ~21s!/~11s!,

v3~ f ,s!5
1

3
f ~31s!/~11s!. ~55!

The evolution-integral solutions in Eq.~30! become
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P2* ~x,s!5F 2~11s!x

2~11s!1xG
11s

,

P3* ~x,s!5F 1

x2S 12
x

2D
2/~11s! 2

2

3~11s!G ~11s!/2

. ~56!

And for the multipliers in Eq.~32! we have

m2~x,s!512
1

2 S 21s

11sD x,
m3~x,s!5m2~x,s!1

1

3 S 31s

11sD x2. ~57!

The stabilizers are to be defined at each step by minimiz
the absolute values of the corresponding multipliers in
~57!. For instance,

s2~x!50, 0<x<1

s2~x!52
x21

22x
, 1<x<2

s2~x!5`, x>2.

The corresponding expression fors3(x) is also easy to
find. For the region of interest, wherex'1, we have

s2~x!50, s3~x!→` ~x51!.

This leads to the self-similar approximations

f 2* ~x!5
2x

11x
,

f 3* ~x!5xS 12
x

2DexpS x
2

2 D , ~58!

obtained from Eq.~56! as in Eq.~23!.
In order to check the accuracy of Eq.~58! as compared to

the perturbative expansions~51!, define the percentage erro

ek~x![
pk~x!2 f ~x!

u f ~x!u
3100% ~59!

and, respectively,

ek* ~x![
f k* ~x!2 f ~x!

u f ~x!u
3100%, ~60!

where f (x)5 ln(11x). At the pointx51, the errors~59! and
~60!, calculated with respect tof (1)5 ln(2)50.693, are

e2~1!5228%, e3~1!520%,

e2* ~1!523.8%, e3* ~1!50.67%.

As is seen, the accuracy of the self-similar approxim
tions in Eq.~58! is an order higher than that of the perturb
tive expansions in Eq.~51!, and this accuracy can be in
creased by taking into account additional perturbative ter
g
.

-

s.

In this section we consider simple examples in order
make transparent all steps of our method. This will permit
in the following sections to avoid the repetition of the tec
nical details when applying the method to more complica
physical problems.

IV. CALCULATION OF CRITICAL TEMPERATURE
FOR 2D AND 3D ISING MODEL

In this section we calculate the critical temperatureTc of
the two-dimensional~2D! and three-dimensional~3D! Ising
model starting from approximate expressions forTc obtained
by the variational-cumulant expansion~VCE! @11#. The con-
vergence of VCE approximations is very slow and even
ing the seven consecutive approximations one obtainsTc for
the 2D Ising model with the percentage error of about 11
We use below the simple variant of the self-similar ren
malization when the exact value of the sought function
known for some point, namely, the knowledge ofTc for the
2D Ising model will be used as an optimization condition f
the trajectory, determining the optimal number of stepst* ,
then used for calculatingTc for the 3D Ising model. Al-
though the expressions below are a little complicated
getting the result in an explicit form, we can realize here
numerical variant of the self-similar renormalization, wh
the sought function is obtained implicitly.

We rewrite the expressions for the critical temperatu
from @11# in terms of a new variablex51/d, whered is the
space dimension. Then we calculateT̃c(x), related toTc as
Tc5(1/x)T̃c(x). Write down the three approximations t
T̃c(x),

T̃c1~x!522x,

T̃c2~x!5
12212x12

623x
, ~61!

T̃c3~x!5
24236x18x215x3

12212x12x2
,

which correspond to the second, third, and fourth appro
mations of@11#, respectively.

Following the standard approach described in Sec.
from the equationT̃c(x)5 f we find the expansion function
x( f )522 f . The points of the approximation cascade traje
tory are

y1~ f !5 f ,

y2~ f !5
2

3 S f 212 f22

f D , ~62!

y3~ f !52
1

2 S 5 f 3238f 2156f224

f 212 f22 D .
For the velocity field we get

v3~ f !52
1

6

~19f 2222f14!

~ f 212 f22!

~ f22!2

f
.
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The evolution integral cannot be calculated explicitly,
we expressedT̃c3* implicitly as a function ofx and t* given
by the equation

E
T̃c2

T̃c3* d f

v3~ f !
5t* ,

and obtainedT̃c3* numerically for two different values
t*51, or t*51.5515, corresponding to a nonoptimized a
optimized variant, respectively. The latter, optimizing nu
ber of steps, was obtained from the conditi
T̃c3* (

1
2,t* )5T2d/2, whereT2d52.269 is the celebrated On

sager temperature for the 2D Ising model.
At t*51 and d52 we found thatTc*52.531 and the

percentage error of our estimate ise3* (Tc)511.542%, ap-
proaching the percentage error reached using seven con
tive approximations toTc @11#.

We should point out here that the authors of@11# did not
attempt to calculateTc for the 3D Ising model, where the
best known ’’exact’’ numerical value of the critical temper
ture isTc54.51 @12#. We obtainedTc*54.712 att*51 and
d53. The percentage error ise3* (Tc)54.47%. For the opti-
mized t*51.5515 our estimate ofTc*54.548 with the error
equal to 0.838% is quite accurate.

It is worth noting that, in principle, the paramet
x51/d may be considered as ‘‘small’’ ford53 and the ex-
pressions forT̃c(x) can be expanded in powers ofx, thus
presentingTc in the form of ‘‘1/d expansion.’’ We per-
formed the same renormalization procedure as above fo

T̃c2~x!'22x2
x2

6
,

T̃c3~x!'22x2
2x2

3
2
x3

12
,

and found that in 2D for t*51,Tc*52.453 with
e3* (Tc)58.109% and in the 3D case witht*51, we have
Tc*54.701 withe3* (Tc)58.109%.

For the optimizedt*51.241 andd53,Tc*54.624 and
e3* (Tc)52.527%. We see that the renormalized 1/d expan-
sion gives by order of magnitude the same accuracy tha
reached from the renormalized original expressions.

One can conclude from the results presented in this
tion that both the rate of convergence and accuracy of
VCE are greatly improved by applying the self-similar reno
malization to the starting VCE approximations. The situat
encountered while renormalizingTc was somewhat simple
since we possessed three reasonable approximations
renormalization and also knew the exact value ofTc for the
2D Ising model. In the next section we meet the case w
the number of terms available are not sufficient for any va
ant of renormalization discussed above and no exact v
for the quantity under consideration is known.

V. RENORMALIZATION OF SHIFTED-POWER
EXPANSIONS

In this section we apply a modified variant of the se
similar renormalization to the ‘‘shifted-power expansion
-

cu-

is

c-
e
-
n

for

n
i-
ue

for the critical indices@13#. Shifted-power expansion orD
expansion is of particular interest for systems without up
critical dimensionality. It can be applied to the calculation
critical exponents of a system described by a Land
Ginzburg~LG! Hamiltonian. Within the framework of one o
many possible realizations of the method, the leading n
linear term of the LG Hamiltonian,c4, is replaced by
(c2)32D, thenD is used as an expansion parameter and
the end of calculations one should setD51. The expressions
for critical indicesh andn were obtained in the form

h5b2~n!D2, b2~n!5
~n14!~n12!

48~3n122!2
,

n5a01a2~n!D2, a05
1

2
, a2~n!5

~n14!~n12!

12~3n122!2
,

~63!

wheren is the number of the components of the order p
rameter.

The corrections to the mean-field values given by Eq.~63!
are about 2 orders of magnitude too small. The authors
@13# had noticed that the results are strongly influenced
thec6 interaction and remain too distant from the analyz
c4 behavior. This conclusion agrees well with the rigoro
results of @14# where it was shown that special Gaussi
pointsn524,22 should appear when thec6 model is con-
sidered, while for thec4 model only the pointn522 exists.
Appearance in the expressions~63! of the combination
n14 signalizes that the critical indices in the interesti
physical regionn50,1, . . . ,3 areinfluenced by the point
that does not have any meaning for thec4 model at all.
Nevertheless, the Gaussian pointn522 does have physica
meaning for thec4 model@15–17# and, formally, the results
given by Eq.~63! are correct atn522. Therefore, one may
hope that a systematic and pernicious influence of the p
n524 can be weakened by some renormalization pro
dure, at least when a physical region not very distant fr
the pointn522 is considered. We should stress also th
the expressions in Eq.~63! do not obey another rigorousl
studied limit of the LG Hamiltonian, whenn→`, i.e.,
h(n→`)Þ0 and n(n→`)Þ1 @18#. Therefore we do not
expect that a successful renormalization of Eq.~63! could be
realized forn very distant from the pointn522.

Our approach to the renormalization ofh and n should
vary, since for the indexn the two terms in theD expansion
are available and the renormalization could be carried
straightforwardly, while for the indexh only single term was
obtained and it is not possible to proceed with extra assu
tions.

Write down the two consecutive approximations to t
index n in powers ofD:

n0~n!5a0 ,

n2~n!5a01a2~n!D2,

and apply the same procedure that leads to the expres
~47! with a substitution ofx to D2. We also retain in the fina
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expression for the renormalized critical indexn2* an effective
time t* , which will be exploited as an optimization param
eter:

n2* ~D,n,t* !5a0expH a2~n!

a0
D2t* J . ~64!

Setting hereD51 and t*51 we see that no considerab
effect was achieved and the indexn remains in the interva
n50.5–0.509 whilen varies fromn522 to infinity. Im-
pose now an additional condition that in the case ofn50,
corresponding to the random walk problem@19#, the approxi-
mation cascade trajectory passes through the value of
critical indexn50.588 known approximately, but with ver
high accuracy for this physical problem@20#. The choice of
this point for optimization of the trajectory is dictated also
the desire to receive renormalized values for the physic
interesting regionn51,2,3 of ‘‘true’’ phase transitions using
information only from the physically distant region, whe
the random walk problem may be a good choice becaus
does not correspond to a ‘‘true’’ phase transition, but onl
formal analogy exists with then→0 limit of the LG Hamil-
tonian.

So, from the conditionn2* (1,0,t* )50.588 we obtain
t*559 and the following values atn51,2,3:

n2* ~1,1,t* !50.633, n2* ~1,2,t* !50.676,

n2* ~1,3,t* !50.715.

These values are reasonable as compared to the ex
ment, high-temperature series, and Borel-summation res
@21#. We should point out that only by means of a sing
parameter we obtain simultaneously renormalized values
the physically interesting situation, i.e., a systematic mu
plicative error in the initial expansion, caused by peculia
ties of theD expansion can be eliminated by a single ren
malization step.

It is also possible to find optimalt* from the condition
restoring the correct value ofn at n→`, where, as is shown
rigorously,n51. In our case, the results happen to be mu
better than for the initialD expansion, but still largely un
derestimaten, e.g., atn50,n*50.544. Nevertheless, thi
variant of optimization is of general interest because of
the limit n→` ~or d→`) is well known.

In the case of the indexh one should proceed differently
since only a single term in theD expansion is known: we
added to the expression forh the term linear inD with some
yet unknown positive coefficientb defining thus a new quan
tity h̃. Then carried out the renormalization procedure
h̃, repeating the steps leading to Eq.~35!. From the renor-
malized quantity h̃* using the variational condition
]h̃* /]b50, we determineb as a function ofn,D,t* . Fi-
nally, we subtracted the termbD from h̃* to find h* . Fol-
lowing this prescription define

h̃5bD1b2~n!D2,

and then find
he

ly

it
a

eri-
lts

or
-
-
-

h

n

r

h̃*5bDexpH b2~n!

b
Dt* J .

This yields

h*5h̃*2bD5t* b2~n!~e21!D2.

At t*51 the results still remain too small. Imposing a
additional optimizing condition ont* by analogy with the
case ofn, that h* should equal 0.026, where the critic
indexh for the random walk problem is taken from@20#, we
find that t*544 and

h* ~n51,t* !50.038, h* ~n52,t* !50.048,

h* ~n53,t* !50.057.

These results overestimateh, especially forn53, but are
much more realistic than the initial valueh;102421023.
This systematic error can be understood if one notices
already the initialD expansion does not obey the limit o
n→`, and h(`)50.002 instead of zero. This systemat
deviation cannot be fully corrected by a variational ren
malization procedure. The same is true in the case of in
n, but in this case more information is available from t
initial D expansion and the results of renormalization rem
reasonable even atn53.

We conclude that by applying the self-similar renorm
ization to theD expansion for the critical indices, one ca
obtain reasonable estimates forh and n, although further
improvement of these estimates does not seem plaus
since initial expressions violate an exact relation in t
n→` limit and possess an unphysical Gaussian point
n524. In the next section we discuss the case when b
limits at n522 andn→` are violated.

VI. IMPORTANCE OF ASYMPTOTIC PROPERTIES

We have seen in the previous section that theD expansion
mimicking the widely accepted Wilsone expansion is, in the
best case, a crude approximation for the critical indic
since an importantn→` limit is violated already in the start
ing terms of theD expansion. The question naturally aris
whether thee expansion obeys exact limits for critical ind
ces, namely, atn522 and n→`. The discussion of this
question for all critical indices will be presented later. In th
section, we consider the Wilsone expansion for the critical
index d, discuss itsn522 andn→` limits, observe that
they are violated, and suggest the self-similar renormal
tion approach allowing one to restore the correct limiti
values for the indexd.

Consider the well-known Wilsone expansion for the
critical indexd @1,18# up to the quadratic terms ine:

d531e1c2~n!e2, c2~n!5
1

2

n2114n160

~n18!2
. ~65!

At n522 andn→`, d54.5. From the exact results for th
n522 vector model@16# and from the scaling law for
d53 the resultd55 follows. The same valued55 was
obtained in the case of the spherical model (n→`,d53)
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@18#. The percentage error for the critical indexd in these
limits is therefore 210%. In the physical region
n50,1, . . . ,3 thee expansion givesd54.4724.46. Unfor-
tunately, there is not much experimental data or theoret
estimates available for the indexd, but if we accept the
scaling laws as correct and estimate from these valuesd
another critical indexh5(52d)/(11d), which is much
better known, both experimentally and theoretically, then
appear in the physical region withh'0.1, that largely~by
three times! overestimatesh. One may think that the index
d is underestimated by the Wilsone expansion. So, we nee
by means of the self-similar renormalization procedure
continue the asymptotic expression~65! to the region of
e;1 with simultaneous restoration of the incorrect limitin
values atn522 andn→`. Introduce the following con-
secutive approximations to the quantityd̃5d23:

d̃1~e!5e,

d̃2~e!5e1c2~n!e2. ~66!

By repeating the same steps that led us to Eq.~56!, we obtain

d̃2* ~e,s!5F e

12 c2e/~11s!G
11s

and

d*531F e

12c2e/~11s!G
11s

. ~67!

Setting in Eq.~67! e51 andn522 , orn→`, it is easy to
show that only fors50 both limits can be satisfied. There
fore

d*531
e

12c2~n!e
. ~68!

The expression~68! in the physical region gives the value

d* ~n50!54.882, d* ~n51!54.862,

d* ~n52!54.852, d* ~n53!54.847.

The indexh, corresponding to these values, can be ea
obtained from the scaling law:

h~n50!50.02, h~n51!50.024,

h~n52!50.025, h~n53!50.026.

These results better agree with the general understandin
h as of a small index and are much closer to the results
the Borel summation than the initialh50.1, obtained from
the e expansion~65! and the scaling law.

We conclude that the application of the self-similar ren
malization improves the Wilsone expansion for the index
d both qualitatively and quantitatively. This example stres
once again the importance of obeying different reasona
limits in the expressions for the critical indices. Another
lustration is given in the next section where the self-sim
al

e

o

ly

of
of

-

s
le

r

renormalization of 1/n expansion and of thee expansion
around lower critical dimension two~in powers ofd22) is
considered.

VII. INVERSE LARGE COMPONENT EXPANSION „1/N…
AND EXPANSION IN POWERS OF d22„21e…

The largen expansions~1/n expansion! @18,22# and e
expansion around the lower critical dimension two (d22
expansion! @23# had raised high expectations as an alter
tive to the Wilsone expansion and field-theoretical approa
@2#. Nevertheless they had never became competitive,
maining a useful guide to the region of largen and a good
qualitative tool, when different aspects of the tw
dimensional behavior are considered. It is clear that the
ues of critical indices given by 1/n and thed22 expansion
do not obey then522 Gaussian limit, becoming divergen
at n50 andn52 (d53), respectively. Therefore, it is no
possible to get a reasonable estimate forn and h in the
physical regionn51,2,3 lying too close to the spurious po
and too far from the correctn→` limit, supported by both
expansions.

Consider the 1/n expansion for the critical indexg:

g522
24

p2n
,

from where

g~n51!520.432, g~n52!50.784, g~n53!51.189.

Correspondingly, the two approximations in powers of 1n
can be written as

g0~n!52,

g1~n!52224/p2n.

Proceeding in accordance with the self-similar renorm
ization prescriptions, the multiplierm1(n,s) can be found:

m1~n,s!512
12

p2

s21

sn
. ~69!

As is seen, the minimum ofum1(n,s)u for n>2 is reached
for s→`. This gives

g1* ~n!52expS 2
12

p2nD ,
and, correspondingly,

g1* ~n52!51.089, g1* ~n53!51.334.

We see that forn53 the value given byg1* becomes
reasonable, deviating from the result of the Borel summat
g51.386 @20# with the percentage error equal t
23.752%, while the initial 1/n expansion has the percentag
error of214.214%. Forn51, the minimum ofum1(n,s)u is
reached fors55.633; correspondinglyg1* (n51)50.508.
We observe that forn51,2 the results are improved if com
pared to the initial 1/n expansion.

The 1/n expansion for the critical indexh is given as
follows @18#
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h5
8

3p2n
2S 83D

3 1

p4n2
. ~70!

This equation becomes singular atn50 and negative a
n522, so that, despite its correct by design behavior
n→`, the values given by Eq.~70! atn51,2,3 are too large

h~n51!50.076, h~n52!50.086, h~n53!50.068.

The direct application of the self-similar renormalization u
ing 1/n as a renormalization parameter with

h15
8

3p2

1

n
, h25

8

3p2

1

n
2S 83D

3 1

p4

1

n2
,

as consecutive approximations does not improve the si
tion, since the influence of singularity atn50 is too strong.
To avoid this divergence, we reexpanded the expression~70!
in powers of the parametery5(n12)/(n18)2, expressing
n as a function ofy:

n5
1

2y
~1216y1A1224y!. ~71!

This choice of the reexpansion parameter is not unique,
the combination (n12)/(n18)2 frequently appears in the
Wilson e expansion. Such a transformation restores the c
rect value ofh at n522 and also keeps intact the corre
limit at n→`. Up to the third order iny we obtain:

h5ay1by21cy3, a5
8

3p2 , b5
112

3p2 ,

c5
1856

3p2 2
14336

27p4 .

Thus the following consecutive approximations may be w
ten as

h1~y!5ay,

h2~y!5ay1by2,

h3~y!5ay1by21cy3.

Proceeding in the usual manner, we obtain

h2* ~y!5ayexpS ba yD , ~72!

h3* ~y!5~ay1by2!expS ca y2D . ~73!

Returning to the initial variable we have

h2* ~n50!50.013, h2* ~n51!50.016,

h2* ~n52!50.018, h2* ~n53!50.019,

and
t

-

a-

ut

r-

-

h3* ~n50!50.015, h3* ~n51!50.02,

h3* ~n52!50.023, h3* ~n53!50.025.

The values of multipliers in these cases are

m2~y,s!511
b

a

21s

11s
y,

m3~y,s!5m1~y,s!1
c

a

31s

11s
y2,

These values are very close to each other, e.g.,
n53,m251.022, andm351.037. From the stability view-
point the corresponding approximations are almost equ
lent. It is also possible to improve results forh by applying
the second self-similar renormalization, as in the recurre
relation ~35!. This givesh* in the form of a continued ex-
ponential@24#

h*5ayexpFba yexpS cb yD G ,
so that

h* ~n50!50.016, h* ~n51!50.024,

h* ~n52!50.03, h* ~n53!50.032.

These values, especially forn52,3, are quite reasonable
The results forn50, not surprisingly, remain too smal
since we used for the renormalization procedure only
large-n expansion, obviously lacking information about th
limit for small n. In order to weaken the influence of th
particular way to define coefficientsa,b,c, it is possible to
proceed with a variational-optimization procedure, consid
ing h* as a function of two unknown parametersā,b̄ and
determining them from the conditions

]h*

]ā
50,

]h*

]b̄
50.

For the particular choice

h*5āyexpS b̄
ā
y

1

12~c/b̄!y
D ,

we find thath*54ecy3 and

h* ~n50!50.019, h* ~n51!50.032,

h* ~n52!50.04, h* ~n53!50.043.

The e expansion withe5d22 around the lower critical
dimension for the critical indexn is written in the form

n215d221
~d22!2

n22
~74!

for d.2 andn.2. At n53,d53,n50.5, giving rather crude
estimate coinciding with the mean-field result. The se
similar renormalization usinge as a parameter for renorma
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ization does not improve this value, becausen→` in the
starting pointd52,n53. On the other hand, atn→`,d53,
formula ~74! gives n51, i.e., the correct limiting value
known rigorously for the spherical model. Reexpanding~74!
in powers of 1/n around this correct value we obtain

n21511
1

n
12

1

n2
1•••. ~75!

Proceeding in accordance with the standard prescription
using 1/n as a renormalization parameter, we define

n0
2151,

n1
21~n!5111/n.

Then, we readily obtain forn1* (n) the expression

n1* ~n!5expS 2
1

nD
andn1* (n53)50.717, giving a reasonable estimate for t
critical indexn. The percentage error, when compared to
result of the Borel summationn50.705 @20# equals
1.702%, while for the initiald22 expansion it equals
229.078%.

For the critical indexh, thed22 expansion has the form
@23#

h5a~n!~d22!2b~n!~d22!2,

a~n!5
1

n22
, b~n!5

n21

~n22!2
.

At n53,d53, this givesh521, in disagreement with al
that is known about this index.

We use belowd225e as a renormalization paramete
since atd52,h50, being a reasonable starting point for t
trajectory. Define the following approximations toh:

h1~e,n!5a~n!e,

h2~e,n!5h1~e,n!2b~n!e2.

The multiplier m2(e,n)512@b(n)/a(n)#@(21s)/(1
1s)] e reaches its minimum ats→`, therefore

h2* ~e,n!5a~n!eexpH 2
b~n!

a~n!
eJ ,

andh2* (1,3)50.135, which is a considerable improvement
compared toh521 from thed22 expansion.

We conclude that the self-similar renormalization im
proves the quality of estimates also for 1/n andd22 expan-
sions, achieving quantitative agreement with other
proaches. However, the brokenn522 Gaussian limit still
makes the possibilities of improving the results very narro
usually an improvement is achieved forn53, but not for
lower n.

In the next section we consider an opposite case of
expansion obeying only then522 limit, but with a broken
nd

e

-

,

n

limit at n→`. Such a situation is similar to that of Sec. V
but no nonphysical Gaussian points will be present.

VIII. SELF-AVOIDING WALK PROBLEM
„N12 EXPANSION FOR N50…

Interesting properties of the LG model forn522 have
been analyzed in a number of works@14–17#. Physically,
n522 corresponds to a Gaussian polymer with the ex
nentsg51,h50,n51/2. From the scaling laws ind53 one
can see thata5 1

2,d55,b5 1
4. It seems natural to develo

expansions in powers ofn12 (n12 expansion! around this
well-defined limit @16#. To our knowledge, this idea ha
never been put into practice. The task of obtaining
n12 expansion is simplified if we note that the Wilsone
expansion for the critical indicesg,h,n,a,b obeys the
n522 limiting values. In order to obtain then12 expan-
sion we simply reexpand the Wilsone expansion ate51 in
powers ofn12. Of course,n12 expansion could be derive
also from the ‘‘first principles’’ in a way similar to thee
expansion, or the 1/n expansion. The nearest to the poi
n522 physically interesting case is located atn50, corre-
sponding to the self-avoiding walk problem equivalent to
polymer. We believe that the case of the order param
dimensionality ofn522 andn50 are closely connected in
a way similar to the connection existing between the sp
dimensionalitiesd54 and d53, with the only difference
being that thee expansion is substituted by then12 expan-
sion. We apply below the self-similar renormalization to t
n12 expansion for the critical indices, presenting only t
results forn50. The values of the critical indices are not
good forn51,2,3. The expansion parameter is too large
the latter cases and also then→` limit is violated, so that
the trajectory strongly deviates for largern from the correct
but distant starting point.

Up to the second order ine, the critical indexn is given
as

n5
1

2
1

n12

4~n18!
e1

n12

8~n18!3
~n2123n160!e2. ~76!

Set heree51 and expand Eq.~76! in powers ofz5n12, up
to the third order terms inz:

n5
1

2
1a1z1a2z

21a3z
3,

a15
5

96
, a252

1

864
, a352

7

3456
.

The following approximations to the quantityñ5n2 1
2

can be readily written down:

ñ1~z!5a1z,

ñ2~z!5a1z1a2z
2, ~77!

ñ3~z!5a1z1a2z
21a3z

3.

Following the standard way, we find the multipliers
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m2~z,s!511
a2
a1

21s

11s
z,

m3~z,s!5m2~z,s!1
a3
a2

31s

11s
z2. ~78!

Both multipliers at the pointz52 (n50) reach their mini-
mum at s50, where m2(2,0)50.911, m3(2,0)50.444.
Consequently, the trajectory restored using all three appr
mations from Eq.~77! will be more stable than that restore
from only two approximations, both trajectories being stab
The evolution integral~12! gives

ñ 2* ~z!5a1z
1

12~a2 /a1!z
,

ñ 3* ~z!5
n2~z!̃

@122~a3 /a1
3!n2~z!̃2#1/2

,

and n2* (z52)50.6,n3* (z52)50.588. The former value is
exactly the Flory ‘‘mean-field’’ exponent@25#, and the latter
is the same as the Borel-summation result, considered a
best known estimate for polymers@20#. The latter value
n3*50.588 should be trusted more, since it is obtained m
ing along the more stable trajectory thann2* . It is encourag-
ing that the Flory and field-theory results, in our consid
ation, come out as successive approximations.

The Wilsone expansion for the critical indexb, up to the
second order ine, is

b5
1

2
2

3

2~n18!
e1

~n12!~2n11!

2~n18!3
e2. ~79!

So, then12 expansion, up to the third order, becomes

b5a01a1z1a2z
21a3z

3,

a05
1

4
, a15

5

144
, a25

1

864
, a352

1

432
.

This results in the following approximations forb:

b0~z!5a0 ,

b1~z!5b0~z!1a1z,
~80!

b2~z!5b1~z!1a2z
2,

b3~z!5b2~z!1a3z
3.

The multipliersm1(z,s),m2(z,s),m3(z,s) for z52 reach
their minima at s→`; so that m3(2,`)
,m2(2,̀ ),m1(2,̀ ). The evolution-integral solution fo
b3* (z) is

b3* ~z!5b2~z!expS a3a0 z3D , ~81!

andb3* (z52)50.301. This coincides with the result of th
Borel summation@20#.
i-

.

the

-

-

The critical indexh has the followinge expansion, up to
the third order:

h5
n12

2~n18!2
e21

n12

8~n18!4
~272156n2n2!e3, ~82!

and the correspondingn12 expansion, up to the third-orde
terms, can be obtained:

h5a1z1a2z
21a3z

3,

a15
25

864
, a252

23

2592
, a35

43

31104
.

Thus, the following approximations result:

h1~z!5a1z,

h2~z!5a1z1a2z
2,

h3~z!5a1z1a2z
21a3z

3.

The multipliersm2(z,s) andm3(z,s) at z52 satisfy the con-
dition um2(z,s)u,1,um3(z,s)u,1 for arbitrarys, the former
satisfying the conditionum2(z,s)u50 at s50.586, the latter
becoming minimal ats50. Thus, we find

h2* ~z!5a1z
1

$12@a2 /a1~11s!#z%11s ,

h3* ~z!5
h2~z!

@122~a3 /a1
3!h2~z!2#1/2

,

with h2* (z52)50.034,h3* (z52)50.023. The former value
is very close to the so-called unconstrainede expansion
(h50.03163 @26#! and the constrainede expansion
(h50.0320625 @26#!. The latter value approaches close
the result of Borel summation,h50.02764 @26#. The scal-
ing law 1

2n(11h)5b is ideally satisfied with our
n3*50.588,h3*50.023, andb3*50.301. It is also worth not-
ing that a nonoptimal but stable trajectory fo
h3* (z,s→`)5h2(z)exp@(a3 /a1)z# leads us to the poin
h3* (2,̀ )50.027, which is exactly the value of the Bor
summation.

The e expansion for the indexg, up to the second order
has the form

g511
n12

2~n18!
e1

n12

4~n18!3
~n2122n152!e2 ~83!

and then12 expansion, up to the third order, is

g511a1z1a3z
3, a15

7

72
, a352

1

216
.

The multiplier atz52 acquires its minimum value ats50
and

g3* ~z!5
a1z

@12~2a3 /a1!z
2#1/2

11
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with g3* (z52)51.165, and with the percentage err
e3* (g)50.345% as compared to the results of Borel summ
tion @26#. Moving along a nonoptimal but stable trajecto
with s→`, we come to g3* (z,s→`)
5a1zexp@(a3 /a1)z

2#11, which yields the value
g3* (2,s→`)51.161, in complete agreement with the Bor
summation@20,26#. The scaling lawn(22h)5g gives for
n5n3* ,h5h3* the valueg51.162. The percentage error
this case equals 0.258%.

For the critical indexa, thee expansion, up to the secon
order, reads

a5
42n

2~n18!
e2

~n12!2

4~n18!3
~n128!e2 ~84!

and then12 expansion, up to the third order, reads

a5
1

2
2a1z2a2z

22a3z
3,

a15
1

6
, a25

1

432
, a352

1

108
.

For the quantityã5 1
22a, with the set of approximations

ã1~z!5a1z,

ã2~z!5ã1~z!1a2z
2,

ã3~z!5ã2~z!1a3z
3,

following the conventional prescriptions, we find the so
tion corresponding to the most stable trajectory withs50:

ã3* ~z!5
ã2~z!

@122~a3 /a1
3!ã2~z!#1/2

,

anda3* (z52)50.217. The field-theory Borel summation r
sults are not available. From the scaling lawn5(22a)/3,
we find that the valuen50.594, corresponding toa3* ,
within the percentage error of 1% agrees with the Bo
summation and our own estimate forn. Therefore, our esti-
mate fora may be considered satisfactory.

The critical indexd, with then522 limit violated by the
Wilson e expansion, was estimated in Sec. VI. We found t
d(n50)54.882. Theoretical field Borel summation data a
not available for comparison. From our estimateh3*50.023
and the scaling relationd5(52h)/(11h), we obtain
d54.865, and within the percentage error of 0.349% b
our estimates agree.

We believe that both good and reliable estimates can
obtained only from expansions possessing correct limits
design. Examples of such behavior are given by thee expan-
sion and field theory expansion in powers of an interact
constant.

IX. APPLICATION TO e EXPANSION

In accordance with all our previous remarks, concern
the importance of the correct limits atn522 andn→`, we
considered the well-known Wilsone expansion@1# and
-

l

-

l

t

h

e
y

n

g

found that it does not obey these limits for the critical indic
d,g,a, andn.

We have seen in Sec. VI that for the critical indexd both
limits are violated with a percentage error equal to210%.
The critical indexg @see Eq.~83!# does obey then522
limit, but at n→`,g51.75, and the percentage error equ
212.5%, when compared with the exactg52. The critical
index a @see Eq. ~84!# obeys then522 limit, but at
n→`,a520.75, instead of the exacta521, with the per-
centage error225%. The critical indexn @see Eq.~76!#
obeys then522 limit, but atn→`,n50.875, with the per-
centage error214.286% when compared to the exa
n51. Clearly these discrepancies should lead to an unc
trolled error within the physical regionn50,1,2,3.Fortu-
nately, the last two indicesh andb @see Eqs.~82! and~79!#
do obey then522 and n→` limits: h50 at n 522,
n→` andb51/4 atn522, andb51/2 atn→`.

Compare, in the physical region, the values ofd,g,a, and
n obtained fromh andb by means of the scaling laws wit
those obtained by the direct use of the Wilsone expansion.
The percentage deviation from the initial Wilson expansio
for the index d is @in this section, in order not to caus
confusion, we use the letter ‘‘E’’ instead of the lettere in the
formula ~59!#

E~d,n50!57.7%, E~d,n51!57.21%,

E~d,n52!57.06%, E~d,n53!57.082%.

For the indexg,

E~g,n50!50.7%, E~g,n51!51.97%,

E~g,n52!53.27%, E~g,n53!54.49%,

the error increases considerably withn, while at n50 the
correct limitn522 still favorably influences the results. Fo
the indexa we have

E~a,n50!520.214%, E~a,n51!5220.36%,

E~a,n52!5168.95%, E~a,n53!552.19%,

again being negligible forn50 but growing withn. For the
index n we get

E~n,n50!51.67%, E~n,n51!53.13%,

E~n,n52!54.52%, E~n,n53!55.75%.

We see that only atn50 the results possess a reasona
accuracy, and the quality of the Wilsone expansion is good
enough to reach, e.g., by means of then12 expansion~see
Sec. VIII!, the quality of the best known estimates.

We conclude that all attempts to improve the critical i
dicesd,g,a,n for n51,2,3 directly from the Wilsone ex-
pansion will leave us with an uncontrollable error. It see
reasonable to renormalize self-similarly only the critical i
dicesh andb possessing correct limiting values and to c
culate all other indices form the scaling laws.

For the indexh @see Eq.~82!#, usinge as a parameter fo
renormalization, the following approximations are availab
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h2~e!5a2~n!e2, a2~n!5
n12

2~n18!2
,

h3~e!5h2~e!1a3~n!e3,

a3~n!5
n12

8~n18!4
~272156n2n2!.

The multiplier m3(n,s) at e51 is always minimal at
s→`, therefore

h3* ~e!5a2~n!e2expH a3~n!

a2~n!
et* J . ~85!

For t*51 we obtain

h3* ~n50!50.045, h3* ~n51!50.051,

h3* ~n52!50.052, h3* ~n53!50.05.

These values are probably too large. The situation may
improved if Eq.~85! is optimized using the knowledge of th
exacth50.2083 fore52,n50 ~2D random walks! @27#.

Setting h3* (e52,n50,t* )50.2083 we find that
t*50.567 and

h3* ~n50!50.029, h3* ~n51!50.033,

h3* ~n52!50.034, h3* ~n53!50.034,

in perfect agreement with the best estimates by the B
summation@20#. If t* is optimized from the knowledge o
the 2D Ising model exacth50.25, then similarly,
t*50.603 and

h3* ~n50!50.03, h3* ~n51!50.034,

h3* ~n52!50.035, h3* ~n53!50.035.

There is also another way to get information from thee
expansion for the indexh. Proceed similarly to the case o
the 1/n expansion, and reexpand Eq.~82! in powers of
y5(n12)/(n18)2 ~at e51). Then, up to the second orde
in y,

h'
3

8
y19y2

andh2*5 3
8y exp(24y), with

h2* ~n50!50.025, h2* ~n51!50.034,

h2* ~n52!50.039, h2* ~n53!50.042,

still in good agreement with a set of data available for
critical indexh @21#.

For the critical indexb, Eq. ~79! defines the set of ap
proximations
e

el

e

b0~e!5a0 , a051,

b1~e!5b0~e!1a1~n!e, a1~n!52
3

2~n18!
,

b2~e!5b1~e!1a2~n!e2, a2~n!5
~n12!~2n11!

2~n18!3
.

The multiplier

m2~n,s!511
a1~n!

a0

11s

s
e1

a2~n!

a0

21s

s
e2

is equal to zero ats52(2a21a1)/(a21a11a0), and the
evolution integral gives

b2* ~e!5
b1~e!

es
1

@12~2a2
2/s!a0

2~11s/2!b1
2/s~e!#s/2

. ~86!

From here, ate51,

b2* ~n50!50.313, b2* ~n51!50.333,

b2* ~n52!50.35, b2* ~n53!50.364.

The formula ~86! is applicable only up ton542, where
s→0 and Eq.~86! becomes undefined. Forn>42, the expo-
nential summation is optimal:

b2* ~e!5b1~e!expS a2~n!

a0
e D , n>42.

For n52,3, b2* almost coincides with the Borel summatio
values 0.34662 and 0.36562, respectively, being larger fo
n50,1, where the Borel summation gives 0.302615 and
0.32561, respectively.

The e expansion was obtained also from the theoreti
field approach up to the fifth order ine @28#. For the critical
index n, up to the second order ine, one has

V[n215aa~n!1a1~n!e1a2~n!e2,

aa~n!52, a1~n!52
n12

n18
,

a2~n!52
~n12!~13n144!

2~n18!3
, ~87!

the limits n522 andn→` being satisfied, in distinction
from the originale expansion. We use the following approx
mations to the quantityṼ52V1a0(n):

Ṽ1~e!52a1~n!e,

Ṽ2~e!52a1~n!e2a2~n!e2. ~88!

All terms in Eq.~88! are positive and the optimal renorma
ization corresponds tos→`. The evolution integral can be
readily calculated, giving

Ṽ2* ~e!52a1~n!e expH a2~n!

a1~n!
et* J . ~89!



-
u

th
th
or
le
o
ct
ic
e

e-
te

-

-

-

e
a
e
e
s
m
an

to

-

r

st for
r

n

ing

55 3997ALGEBRAIC SELF-SIMILAR RENORMALIZATION IN . . .
We found that att*51,e51,

n2* ~n50!50.607, n2* ~n51!50.655,

n2* ~n52!50.698, n2* ~n53!50.736.

Similarly to the case of the indexh, the self-similarly
renormalizede expansion forn overestimates the critical in
dex, as may be seen from the comparison with other res
@21#. Let us optimize the expression forn2* using the knowl-
edge of the 2D Isingn51 @29#. From the condition
n2* (e52,n51,t* )51 we find t*50.576 and the optimized
values

n2* ~n50!50.59, n2* ~n51!50.628,

n2* ~n52!50.662, n2* ~n53!50.691.

Compared to the best known calculations ofn from the
Borel summation and similar methods, forn50,1 our esti-
mates practically coincide with them, and forn52,3 the per-
centage errors are20.451% compared ton50.665 at
n52 @30# and 1.003% compared ton50.698 atn53 @30#.

It is interesting that by a single parameter optimization
indexn is improved in the whole physical range. It is wor
noting that t* used for optimization is about the same f
h and n. Evaluation of the critical indices is also possib
based on the field-theoretical expansions. Information is
tained in the latter case from the perturbative series dire
and the results are marginally sensitive to the way in wh
the position of an infrared stable fixed point is determin
@20,31#.

X. APPLICATION TO THE FIELD-THEORY EXPANSION

Theoretical field approach in the theory of critical ph
nomena gives, probably, the most accurate and consis
estimates for the critical indicesh andg @2#. The analysis of
the expansions in powers of the interaction constantg (g
expansion! for these indices from the viewpoint of the lim
iting casesn522,n→`, became possible only when theg
expansions have been written for arbitraryn @30#. By direct
inspection of the expressions forh and g from @30#, we
found that then→` limit is obeyed rigorously ifg51, i.e.,
h50,g52 and then522 limit is obeyed with very high
accuracy for arbitraryg, i.e.,h'0, g'1 with the error in-
significant within the framework of the theory of critical in
dices.

The standard approach@20# uses, for computing the infra
red stable fixed pointg* of the beta functionW(g), a com-
plicated Borel summation technique. Then critical indic
are calculated asg(g* ),h(g* ). This approach requires
number of terms in the expansions. We apply below the s
similar renormalization to only the initial three terms in th
expressions forW(g),g21(g),h(g) and obtain estimate
with an accuracy comparable to the best known Borel su
mation results obtained from all known terms in the exp
sions.

We construct the following set of approximations
W(g) using theg expansion from@30#:
lts

e

b-
ly
h
d

nt

s

lf-

-
-

W2~g!52g1g2,

W3~g!5W2~g!2a3~n!g3,

a3~n!5
6.074 074 08n128.148 148 15

~n18!2
. ~90!

From the equationW2(g)5 f we find the expansion function
x( f )5 1

2(11A114 f ). The points of the approximation cas
cade trajectory are

y2~ f !5 f ,

y3~ f !5y2~ f !2
a3
8
x3~ f !.

For the velocity field we get

v3~ f !52
a3
8
x3~ f !.

By analogy with Sec. IV, the evolution-integral solution fo
W3* is obtained implicitly from the equation

E
W2~g!

W3* d f

v3~ f !
5t*

and the rootg* of the equationW3* (g,n,t*51)50 is ob-
tained numerically, as a functiong*5g* (n). In the physi-
cally important cases,

g* ~n50!51.59, g* ~n51!51.559,

g* ~n52!51.524, g* ~n53!51.491.

At n522,g*51.599 and atn→`,g*51. The depen-
dence ofg* (n) in the intervaln522,0 is nonmonotonous, a
maximum is reached atn521, whereg*51.61. Our values
are higher than the results of@30#, but remain within the
reasonable bounds and show the same tendency, at lea
n50,̀ . No data are available for comparison fo
n522,0.

For the critical indexh, keeping the starting two terms i
powers ofg, we can write down the approximations@30#

h2~g!5b2~n!g2, b2~n!5
0.296 296 296 3~n12!

~n18!2
,

h3~g!5h2~g!1b3~n!g3,

b3~n!

5
0.0246840014n210.246840014n10.3949440224

~n18!3
,

~91!

and the evolution integral can be readily calculated result
in

h3* ~g,n!5b2~n!g2expH b3~n!

b2~n!
gJ

and
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h3* ~n50!50.027, h3* ~n51!50.030,

h3* ~n52!50.031, h3* ~n53!50.031.

These values are practically the same as that quoted in@20#
where the Borel summation has been us
h(n50)50.02663, h~n51!50.03164, h~n52!50.03364,
h(n53)50.03364. At n54, h3* decreases to 0.03, th
same tendency is seen in the data of@30#.

For the critical indexg we keep the three starting terms
powers ofg:

G[g21511c1~n!g2c2~n!g2,

c1~n!52
n12

2~n18!
, c2~n!52

n12

~n18!2
. ~92!

The following approximations to the quantityG̃ 52G11
are used:

G̃1~g!5c1~n!g,

G̃2~g!5G̃1~g!2c2~n!g2.

The multiplier m2(g,n,s)512@c2(n)/c1(n)#(21s)/(1
1s)g, calculated forg5g* (n), is always minimal for
s50. The evolution integral gives

G̃2* ~g,n!5c1~n!g
1

11@c2~n!/c1~n!#g
.

For g2* we obtain

g2* ~n50!51.166, g2* ~n51!51.239,

g2* ~n52!51.305, g2* ~n53!51.363.

The percentage errors aree2„g(n50)…50.431%, as
compared to 1.161 from the Borel summation: zero error
compared to 1.24162 at n51;e2„g(n52)…520.836% as
compared to 1.316, ande2„g(n53)…521.659%, as com-
pared to 1.386 from the Borel summation. In the latter c
of n53 we also constructed the set of approximations
rectly for the indexg, expanding Eq.~92! in powers ofg, up
to third order:

g511d1~n!g1d2~n!g2, d1~n!52c1~n!,

d2~n!5c1
2~n!1c2~n!. ~93!

Approximatingg̃ 5g21 by

g̃1~n!5d1~n!g,

g̃2~n!5g̃1~n!1d2~n!g2,

and finding out that the multiplierm2(g,n,s) is minimal at
s→`, we have

g̃2* ~n!5d1~n!gexpH d2~n!

d1~n!
gt* J . ~94!
:

s

e
i-

At t*51 we obtaing2* (n53)51.37 and the percentag
error 21.154%. The same procedure applied ton50,1,2
always keeps the errore,1%. These results are quite acc
rate, especially if one remembers that only the starting te
were used. Unfortunately, the expression~93! does not obey
the n→` limit with a percentage error23.7%. An optimi-
zation of the expression~94! may be carried out requiring
that the limit g52 at n→` be restored~see also Sec. V!.
This aim is achieved witht*51.15 andg2* (n53)51.375
with a percentage error20.794%. An effective increase o
t* mimics the effect of introducing higher terms into consi
eration.

XI. CONCLUSION

We suggested here a variant in the method of self-sim
renormalization permitting one to find effective sums of a
ymptotic series. The advantage of the method is that it allo
one to get results exploiting just a few first terms of a giv
series, when no other resummation techniques work. At
same time, the accuracy of the results is not worse than
reached in other known sophisticated techniques involv
about ten terms. In addition, our method in the majority
cases makes it possible to present answers in the form
simple analytical expressions that are easy to study for c
sidering their dependencies on various parameters, inclu
asymptotic behavior with respect to these parameters.

The possibility of realizing a renormalization, havin
available only a few terms of a series, is due to an algeb
transformation that is equivalent to the effective increase
approximation orders. That is why we call this variant t
algebraic self-similar renormalization.

The general idea of the self-similar renormalization@4–8#
is to extract the maximum of information from the minim
number of terms. Such a minimax criterion, certainly, can
followed only with the help of additional functions, makin
the convergence as fast as possible. These functions
called control or governing functions, and they play the sa
role as the control functions in the optimal control theory.
the algebraic self-similar renormalization, the control fun
tions are introduced into powers of an algebraic transform
tion. The choice of these control functions is based on
principle of maximal stability by minimizing the absolut
value of mapping multipliers.

We illustrated the effectiveness of our approach by ren
malizing divergent series in the theory of critical phenome
Doing this, we especially restricted ourselves from us
many terms of perturbative series, which are sometim
known—this is to emphasize that our approach is effect
when, really, only minimal information is available. Dealin
with higher-order terms needs a multiple repetition of t
renormalization procedure. This requires a slight general
tion of the technique and a more in-depth presentation. T
multiple renormalization is planned to be the subject o
separate publication.

The method suggested is quite general and can be ap
to arbitrary divergent series. The choice of examples fr
the theory of critical phenomena owes to the common in
est in this problem. We also stress that even for this probl
where so much is known, our understanding can be
proved by, first, obtaining the results much easier, seco
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deriving analytical formulas, not involving heavy numeric
calculations, and, finally, by restoring correct asymptotic
havior with respect to physical parameters, such as the n
ber of components.

Another important message that we would like to bring
is that one should not be afraid of simple perturbative se
that, being divergent, seem, at first glance, to be sense
Even a seemingly bad perturbative series contains quite
of useful information that can be extracted by means of
a

s.

o

l
-
m-

s
ss:
lot
n

efficient renormalization procedure. We hope we were a
to convince the reader that the algebraic self-similar ren
malization suggested can be such a tool for extracting q
accurate information even from bad and short series.
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