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We consider the method of self-similar renormalization for calculating critical temperatures and critical
indices. An optimized variant of the method for an effective summation of asymptotic series is suggested and
illustrated by several different examples. The advantage of the method is in combining simplicity with high
accuracy|[S1063-651X97)01004-0

PACS numbes): 64.60.Ak, 11.10.Gh, 05.70.Jk, 02.30.Lt

I. INTRODUCTION sider the resummation problem for the asymptotic series in
In the theory of critical phenomena one usually Obtainsthe theory of critical phgnomena_and advance a variant of the
- " S . “method, more appropriate for this problem.
critical temperatures and critical indices as expansions in
powers of some parameters that, as a rule, are not small. ForI
instance, in the Wilsor expansiorf1] one hase=1. In the
field-theoretical approac?] the expansion is in powers of The complete description of the method with the corre-
the renormalized coupling constage= 1.4. Such expansions, sponding mathematical foundation can be found in Refs.
as is well known, are asymptotic and lead to reasonable rd4—8]. In this section we give only a general scheme of the
sults only in the low orders. The direct use of higher ordersnethod, which is necessary for explaining the variant we
makes the results only wor$2,3]. When anumber of terms ~ suggest.

in a divergent series is known one may invoke resummation Suppose we are interested in a functign) of the vari-
techniques, such as Padied PadeBorel ones. However, the able xe(—,%). Let this function satisfy a complicated
knowledge of only dew first termsdoes not permit one to equation that canno_t be solved exactly. Assume that by
use these techniques. Thus, one always confronts the profi€ans of perturbation theory we can get a sequence

lem of how to improve the results of a divergent series haviPk(X); of perturbative approximationsp,(x), where
ing only a few terms. k=0,1,2,...,enumerates the approximation order. Usually,

In the present paper we suggest a solution to this proble erturbation sequences are divergent. To extract a meaning-

by advancing a method that has the following peculiarities™! reflult from a divergent shequence oneh has tohlnvol\f/e tkl'fe
(i) It permits one to accomplish an effective summation of a50-called resummation techniques. In the method of self-
imilar renormalization a divergent sequence can be made

divergent series consisting of just a couple of terms, when ng . _ - ; :
other method is applicabldii) It is simple and accurate, convergent by introducing additional functions governing

providing an accuracy no worse than the sophisticated PadPnvergencesee[4—8)). These functions, because of their
and PadeBorel techniques involving about ten terms when 0l€; are called governing or control functions. Isébe a set
they are availabldiii) It is regular, unambiguously prescrib- Of Such control functions ~entering into a sequence
ing the way of action. The method suggested is a variant of Fk(X,S)} obtained by a perturbation algorithm. _
the method of self-similar renormalizatidd—6]. The latter In addition to introducing the control functions, the main
is a renormalization-group approach using self-similarity ofidea of the method of self-similar renormalization is to treat
subsequent perturbative terms. Since renormalization grodf€ Passage from one approximation to another as a motion
is nothing but a kind of a dynamical system, the approactVith respect to the approximation numbkr0,1,2,....
can be formulated in the language of dynamical theory with his motion is realized in the_functlona_l space of t_he c_on5|d-
the usage of its powerful techniques as well as of those ofred function as follows. Define the initial approximation
control theory[6—8]. Then the number of the approximation Fo(x,5)=f )
order plays the role of discrete time. Motion with respect to o
the latter corresponds to transfer from one approximation Qs an equation for the expansion functionx(f,s). Substi-
another. Th|s makes it po§3|ble to define a dynamical systee the latter back t6,, SO that
whose trajectory is bijective to the sequence of approxima-
tions. Such a dynamical system with discrete time has been yi(f,8)=F(x(f,s),S). ®)
called the approximation cascade; convergence of a sequence
of approximations is equivalent to stability of a dynamical The relation inverse to Eq2) is
trajectory. The stability and, respectively, convergence are
governed by control functions. The fixed point of a trajectory Fi(x,8) =y (Fo(X,S),S). 3
defines the sought function.

This method has been successfully applied to the eigen- Let {y,} form a group of transformations with respect to
value problem in quantum mechani&10]. Here we con- k=0,1,2 ....Then the trajectoryy,(f,s)} of this dynami-
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cal system, according to definitiori) and(3), is bijective,  or the minimal number of steps. When there are no addi-

that is, in one-to-one correspondence to the approximatiotional restrictions, the minimal number of steps counted by

sequence{F,(x,s)}. This dynamical system with discrete k is 1, so that

time k has been callef7,8] the approximation cascade. The

attracting fixed point of the cascade trajectory is, by con- abs mirg =1. (10

struction, bijective to the limit of the approximation se- . )

quence{F(x,s)}, that is, it corresponds to the sought func- I_n the case v_vhen some constraints are imposed on the_mo-

tion. tion, the minimal time(9) should correspond to the condi-
Dealing with continuous time is easier than dealing withtional minimum. For instance, if a valug=f(x,) of the

discrete time. Therefore, we embed the approximation cas.s-fu‘élht functionf (x) is given for somex,, then we can find

cade{y,} into an approximation flowy(t, . ..)} with con- tx by requiring the tra}jectory.of the approximation cascade

tinuous time t=0. This implies that the trajectory tO pass through the given poifg.

{y(t,f,s)} of the flow passes wherrk=0,1,2 . . ., through To calculate the evolution integréb), we need to define
all the points of the cascade trajectory, the velocity field. This can be done by the Euler discretiza-
tion of Eq. (5) yielding the finite-difference form
y(k,f,s)=y(f,s) (k=0,1,2...). (4)
vil(f.9)=yw(f,s) —yk-1(f,s). 11

The evolution equation for the flow reads o . .
Substituting Eqg.(11) into Eqg. (6), and using Eq.(3), we
come to the representation

F;+1 df *
— =t 12
Lkzwﬂﬁs> ‘ (12

d
V(LTS =v((Lf,s), ©)

with the right-hand side being the velocity field. The latter,
in the language of renormalization-group theory, is often

called the Gell-Mann—Low op function. for the evolution integral(6), where Fy=F(x,s),Fi.;
Integrating the evolution equatios) from t=k to  =Fy ;(X,s).
t=k*, we get theevolution integral Finally, we have to define the sstof the control func-
tions. The role of the latter is to govern the convergence of
fyﬁﬂ df —K* —K ©6) the approximation sequence. This convergence can be ex-
ye v(f,s) - ' pressed, in the language of dynamical theory, as the stability

of the cascade trajectory. A useful tool for analyzing stability
in which y,=y(k,f,s) andyy,,=Yy(k*,f,s). Before speci- is a set{u,} of the local multipliers
fying the numbersk and k* in the limits of the evolution

integral, let us note that the differential for(®) of the evo- _ i
lution equation, or its integral forr(6), are equivalent to the pdt.8)= of Yilf,9). (13
functional relation
The inequality
y(t+t',f,s)=y(t,y(t',f,s),s). (7)
|i(f,8)[<1 (14

The latter in physical applications is labeled as the self-

similarity relation, which explains the term we use. The self-is the condition of local stability at the stépwith respect to
similarity, in general, can occur with respect to motion overthe variation of an initial point f. The equality
different parameters. In our case, this is the motion over théuk(f,s)|=1 implies local neutral stability. For a convergent
steps of a calculational procedure, the number of steps playequence corresponding to a contracting mapping, the condi-

ing the role of effective time. tion of asymptotic stability is
If there exists an attractive fixed point of the
approximation-flow trajectory, then it is always possible to |i(f,8)| =0  (k—o0). (15)

find a numberk* in the evolution integra(6) such that the

upper limity? would correspond to an expression The approximation cascadg,} describes the motion in

the functional spacéf}. To return to the domaix}, we

i (x,5)=y(k* ,Fo(x,5),5), (8 ~ Mmustuse the inverse transformati@. With th(_a help of the
latter we may pass from the multipliéd3) given on the

representing, with the desired accuracy, the sought functiofinctional spacef} to its image

f(x). If yi would be an exact fixed point, then E§) would

give an ekxact answer to the problem. However, a fixed point Mk(X,8) = uk(Fo(X,S),5) (16)

can be reached only after an infinite number of step

k—oo. For a finite numbek, the limit y; may represent a

fixed point approximately, because of which it is named th

quasi-fixed point. Our aim is to reach the latter as fast as Imi(x,s)|<1. (17)

possible, that is, during the minimal time

%eing a function ok. For the imagd€16), the same stability
econdition as in Eq(14) can be written as

. o According to Eq.(15), the local multipliers diminish when
k =min(k* —k), (9 approaching an attracting fixed point. That is, the variation of
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initial conditionf produces less and less effect on the trajec-Then, the order of the expressi¢ldl) becomesk+s. The
tory as soon as the attractor becomes closer. In other wordsansformation inverse to Eq21), as is evident, is

the lower the absolute values of multipliers, the more stable

is the trajectory. Therefore, it is reasonable to define the con- Pk(X) =X P(X,S). (22
trol functions as those minimizing the absolute values of thq:
local multipliers, making by this the trajectory more stable at
each stefk. In this way, a set of control functions is de-
fined by theprinciple of maximal stabilitywritten as

ollowing the method described above, we consider the se-
quence{P,(x,s)} and construct an approximation cascade
{yx} whose trajectory{y,(f,s)} is bijective to{P,(x,s)}.
Solving the evolution integrall2), we havePj (x,s). From

(19) the principle of maximal stability18) we define the stabiliz-
erss,(x). Substituting these int&®; (x,s) and invoking the
inverse transformatiori22), we obtain the self-similar ap-
proximation

[ My (X, s(X))| = ming|my(x,s)|.

Because of this, the control functiosg(x) defined by the
principle (18) may be called thatabilizing functionsr sta-
bilizers.

Note that the control functions may be introduced in sev-

eral ways, as discussed in Refd—10|, however, always The multiplicative transformatiori2) looks like the most
being related to stability conditions and the closeness of datyral for the case when the perturbative approximations
trajectory to an attracting fixed point. In all cases the controlpk(x) have the form of polynomials or series, generally
functions are to be defined so that they could accomplislgpeaking, not necessarily in integer powers. The fagtor
their main job, i.e., to govern the convergence of an apprOXi'effectively increases the approximation order, anglays
mation sequence, which, in terms of dynamical theory issimultaneously the role of stabilizer.
equivalent to stabilizing the cascade trajectory. In the present \ypat powers we have to choose, that is, to what effective
paper we shall use the definition of stabilizers givettl8).  ,rger we need to go is dictated by the principle of maximal
After the stabilizers are defined, we have to substitutgapility selecting the most stable trajectory of the approxi-
them into the corresponding approximatidigx,s) getting  mations cascade. In particular, it may happen a0, and
we do not need to proceed further, or, vice versa, we may
i) =Fi(X,8¢(x))- (19 have to go to the limit 06—, thus making allowance for
) o o all approximation orders. In each concrete case, an effective
This stage can be called tiséabilizing renormalizatiorof a  rder that we need to reach depends on how good is the
perturbative sequence. _ _ perturbative sequencép,(x)} we start with and, respec-
_ Then, considering the motion near the renormalized quangyely, how much information can be extracted from its first
tity (19) by means of the evolution integrél2), we obtain  torms by means of the double renormalizati®g) and (20).
. s The optimization by introducing the stabilizing control
K (X)=F (X, 8(x)). (200 functions into the powers of perturbative polynomials renor-
malizes the algebraic structure of the latter. Because of this,
This step can be called thiynamical renormalizationAnd  and in order to distinguish the suggested optimization proce-
the whole procedure of the double renormalizatia®) and  dure from other possible variants, we shall call it tige-
(20) is named the self-similar renormalization. It is worth praic self-similar renormalization
noting that the evolution equatidb) is, generally, nonlinear  To concretize the procedure, let us write explicitly
and can have several different solutions leading to different
self-similar approximation$20). In such a case, to select a X
physically meaningful solution, we need to involve addi- Pk(X)=nZO anX", a,#0, (24)
tional conditions as constraints.The role of the latter can be -
played, e.g., by properties of symmetry, asymptotic properas a polynomial of the ordés. Following Eq.(21) define
ties atx—0 or x—o, sum rules, or other relations contain-
ing some known information on the character of the sought
solution. Such additional constraints narrow the set of pos- P(x,8)= 2, anx"*®. (25
sible solutions to a class with desired properties. Thus, we n=o
should always remember from what class we are looking fokimilarly to Eq. (1), we have
a solution.
Keeping in mind that we wish to get good accuracy for Po(x,8)=agx’=f, (26)
the sought function, having just a few perturbative terms
available, we need to find some tricks that could effectivelyfrom where the expansion function is
increase perturbation order. We suggest below one such £\
trick. . .. x(f,9)= (—) . 27)
Suppose that there is a sequence of approximations ag
pk(x) having polynomial structur& showing the order of o i )
the polynomial. This order can be effectively increased by'ne definition(2) yields the points
means of the multiplicative transformation

ff (x) =X~ %P (X,5¢(X)). (23)

k

n/s+1

(28)

k
f,s)= al —
Pi(x,8)=x%p(x), s=0. (21) y(t.s) nzoa =N
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n/s

of the approximation-cascade trajectory. For the velocity k a, n\/ f
field (11) we get w(f,9)=> —1+=|=—] (32)
n=o0 g s/\ag
f (k+1)/s+1
vir1(f,S)=ays1 a—) (2990  and its imagg16) reads
0
k
From the evolution integrall2) we find M(X,S) = 2 ?( 1+2 X" (32)
n=0 49
* = Pk . . - oy . g
k+1_{1_[(k+ 1)ak+1tzlsa(()k+1>/s+1]P<kk+1)/s}s/<k+1) : The principle of m-ao-(lmal stab]llty18) defines the stabll|;ers
(30) sk(X), whose explicit expressions depend on the coefficients
a,. According to the transformation®1)—(23), from Eq.
The multiplier (13) becomes (30) we obtain

Pk(X)
* —
k+l_{1_ [(k+ 1)ak+lt~lkrlsaék+l)/5+l]Xk+lpk(X)(k+l)/S}S/(k+l) ’

(33

where s (x) defines the most stable trajectory. When thereadditional constraints imposed. All these variants will be ex-
are no additional conditions, the minimal valtfe=1, as in  emplified in the following sections.
Eq. (10).

As is noted above, it may happen that the most stable IIl. ILLUSTRATION BY SIMPLE EXAMPLES
trajectory corresponds te—oo. Let us show how the self- .
similar approximation(33) simplifies in this case. It is Suppose that by perturbation theory we have
straightforward to check that the limit of the right side in Eq.
(33), ass—, leads to Pi(X)=1-X,

with 0=x<1. How could one continue this expression from
. (39 smallx<1 tox=1, when no other information is available?
Following the algebraic self-similar renormalization, we
construct the transformed polynomi@ll) or (25), which for
the case Eq(36) is

(36)

a
fri ()= pk(X)eXp( Tl e+
Ao

One may notice that renormalizing(x) in Eq. (34) we can
obtain the recurrence relation

a Py(x,5)=x5—x1"s, (37
E+1(X)=f§(X)exp(ﬂxk”)- (35) , . _
2N According to Eq.(26), we have the expansion function
It is possible also to derive several other relations permitting x(f,5)="f15. (39)

one to repeat the self-similar renormalization several times,

which is useful when working with high-order terms. How- Then, Eq.(28) gives

ever, in what follows we shall limit the consideration of par-

ticular examples by keeping only a few terms of the corre- y,(f,5)=f—f1+15 (39
sponding perturbative series. This is to emphasize that the

method suggested allows one to reach good accuracy with Bhe velocity field(29) becomes

minimal number of perturbative terms, when no other resum-

mation technique is applicable. Comparing E2p) with Eq. vy(f,5)=—f115, (40
(34), we see that the self-similar renormalization can yield o ) )
quite different expressions, from the fractional form to the The evolution integra(12), leading to Eq(30) now yields
exponential one. Below we shall illustrate this by some

simple examples. Each appearing form of an approximation P*(x,3) =
results from choosing the most stable trajectory by which it ol

is possible to reach a quasi-fixed-point during the minimal

time. Recall in this connection the analogy with classicalFor the multiplier(32) we have
mechanics. Notice also that it is possible to follow a trajec-
tory that is stabilized by imposing additional conditions, such
as asymptotic properties, or prescribing that the trajectory is
to pass through some given points. In such a case the motion
will not, generally, be accomplished during the absoluteMinimizing the absolute value of the latter gives the stabi-
minimal time (10), but the latter should be defined from the lizer

sx \®

S+X (42)

my(X,8)=1— X. (42

1
1+ =
S
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this purpose take the function In{k) with x=0. We opt for

S1(x)= T—x' O=x=1 this function, as an example, since the logarithmic expres-
sions are typical of thermodynamic potentials in statistical
Sy(X)—oe, x=1. (43  mechanics and of generating functionals in field theory.
Write down the three first perturbative approximations for
The self-similar approximatiof33) reduces to In(1+x) in powers ofx, thinking thatx is small:
Sp(x) | P1(X)=X
* = — 1 )
fl(x) (sl(x)+x) (44)
2
Being interested in the regior=1 we have to take the limit P(X)=X— X_, (51)
s1(x)—co. Therefore, for the self-similar approximati¢fd) 2
we obtain
x2 X3
s |\® Pa(X)=x— 5+ 5.
* — i = | —aX 2 3
f1(x) s'fl o x e X (45)

Our aim is to construct self-similar approximations for
In(1+x) in the regionx~1, with expansiong51) that are
(46) valid only for x<1.

Following the standard prescription of the method, define
with ag,a,#0, derived for|x|<1, can be continued to the the transformed polynomialg5) for those in(51), which
region |x|=|ay/a,|, where it is represented by the self- 9V€S
similar approximation

In the same way, a linear expansion

p1(X)=ap+asX,

Pi(x,8)=x1"s,
x &
fl(x)=aoexp<a—ox . (47) 2+
Pz(x,s):x”S—T, (52)
Thus, we may conclude that the exponenti) is a general
self-similar representation of a linear expansid6), when
. . . 2+s 3+s
no additional constraints are imposed. 14s X X
Now turn to the case when we construct a self-similar P3(X,8)=x"""— 2 + 3

continuation of Eq(36) satisfying the prescribed asymptotic

behavior Now, the initial, i.e., the lowest-order, approximation is

P.(x,s). Therefore, as in Eq(26), from the equation
Pi(x,s)=f we find the expansion function

wheren>0 is fixed. Repeating the same procedure as ear- Vit
lier, we come to Eq(44). Comparing the latter with E¢48), x(f,s)=f11+9), (53
we gets;(x)=n, so that

f(x)oex", Xx—oo, (48)

] The points of the approximation cascade trajeci@§) are

fr(x)=|—— 49
1 ()= o5 (49) yi(f.9)=1,
Generalizing this result for a linear combinatio#6) under 1
the asymptotic conditio48), we have yo(f,8) =y (f,s)— Ef<2+s)/<1+s>, (54)
nag \"
* —
f¥(x)=a, na—a (50)

ya(f,8)=y,(f,s)+ %f“*s)““s).

In this way, one perturbative expansion may have several

self-similar representations corresponding to different im- o

posed constraints. The form of these representations can vaip' the velocity field(21) we get

between the exponential, E¢47), and fractional one, Eq.

(50). However, for each given constraint this form is

uniquely defined. If no constraints are imposed, the form of

the resulting self-similar approximation is governed by the

stabilizers obtained from the principle of maximal stability 1

of a self-similar trajectory. va(f,5)= = f(3+9)/(1+9), (55)
Let us illustrate how accurate is a self-similar approxima- 3

tion and how it is possible to increase the accuracy by con-

sidering higher-order terms of a perturbative expansion. Fofhe evolution-integral solutions in E30) become

1
V2(f,S)= _ Ef(2+s)/(l+s),
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2(1+s)x ]1*s In this section we consider simple examples in order to
* _ . . .
5(X,8)= m ) make transparent all steps of our method. This will permit us
in the following sections to avoid the repetition of the tech-
2 (1+9)/2 nical details when applying the method to more complicated
* — _ .
P3(x,s)= {4 X\ 2(1F5) 3(1+s) (56) physical problems.
X —_——
2 IV. CALCULATION OF CRITICAL TEMPERATURE

And for the multipliers in Eq(32) we have FOR 2D AND 3D ISING MODEL

In this section we calculate the critical temperattigeof

My(X,s)=1— 1j2+s X, the two-dimensiona(2D) and three-dimension&BD) Ising
2\1+s model starting from approximate expressionsTgiobtained
1134 by the variational-cumulant expansi¢viCE) [11]. The con-
S f VCE approximations is very slow and even us-
_ 4z 2 vergence o ppro is very ;
Ms(X,$) = M(x, ) 3l1+s/” (57) ing the seven consecutive approximations one obfgjrfer

N ] ~__ the 2D Ising model with the percentage error of about 11%.
The stabilizers are to be defined at each step by minimizingye yse below the simple variant of the self-similar renor-
the absolute values of the corresponding multipliers in Eqmgalization when the exact value of the sought function is
(57). For instance, known for some point, namely, the knowledgeTof for the
2D Ising model will be used as an optimization condition for
the trajectory, determining the optimal number of steps
x—1 then used for calculating . for the 3D Ising model. Al-
sz(x):22—, 1=x<2 though the expressions below are a little complicated for
X getting the result in an explicit form, we can realize here the
numerical variant of the self-similar renormalization, when
the sought function is obtained implicitly.
We rewrite the expressions for the critical temperature
from [11] in terms of a new variablg=1/d, whered is the

space dimension. Then we calculatg(x), related toT. as

Sy(X)=0, 0=x=<1

Sy(X)=, X=2.

The corresponding expression feg(x) is also easy to
find. For the region of interest, where=1, we have

S2(X)=0, s3z(x)—e  (x=1). T.=(1/X)Te(x). Write down the three approximations to
This leads to the self-similar approximations Te(®),
f* _ 2X :I:Cl(x)zz_xv
z(X)—m,
= _ 12— 12x+2
x| (% 2X)= g g 61
F500=x| 1= 3 |exp 3|, (58)

~ 24— 36x+ 8x%+5x°

obtained from Eq(56) as in Eq.(23). Tes(X= 5 o

In order to check the accuracy of E®8) as compared to

the perturbative expansioKsl), define the percentage errors |\ hich correspond to the second, third, and fourth approxi-

mations of[ 11], respectively.

ek(x)EMXwO% (59) Following the standard approach described in Sec. Il
[F(x)] from the equationT.(x)=f we find the expansion function
and, respectively, x(f)=2—f. The points of the approximation cascade trajec-
tory are
x )=Mx100°/ (60) (f)y=f
Ek(x - |f(X)| 0, Y1 —
wheref (x) =In(1+x). At the pointx=1, the errord59) and (f)= E f2+2f-2 62)
(60), calculated with respect tt(1)=1In(2)=0.693, are Yz 3 f '
62(1):_28%, 63(1):20%, 1 5f3_38f2+56f_24
ya(f)=~— —( T )
€5(1)=—3.8%, €5(1)=0.67%. 2 fFo2f=2

As is seen, the accuracy of the self-similar approximaJFor the velocity field we get
tions in Eq.(58) is an order higher than that of the perturba- ) )
tive expansions in Eq(51), and this accuracy can be in- v (f):_i (19f°—22f+4) (f-2)
creased by taking into account additional perturbative terms. 3 6 (f°+2f-2) f
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The evolution integral cannot be calculated explicitly, sofor the critical indices[13]. Shifted-power expansion ak

we expressed s, implicitly as a function ofx andt* given
by the equation
F§3 df :t*
Lvaf)

and obtained'f’c‘3 numerically for two different values

expansion is of particular interest for systems without upper
critical dimensionality. It can be applied to the calculation of
critical exponents of a system described by a Landau-
Ginzburg(LG) Hamiltonian. Within the framework of one of
many possible realizations of the method, the leading non-
linear term of the LG Hamiltoniany®, is replaced by
(4%)%4, thenA is used as an expansion parameter and at

t* =1, ort* =1.5515, corresponding to a nonoptimized andthe end of calculations one should get 1. The expressions

optimized variant, respectively. The latter, optimizing num-
condition

ber of steps, was obtained from the
TE(5,1%)=Tog/2, whereT,q=2.269 is the celebrated On-
sager temperature for the 2D Ising model.

At t*=1 andd=2 we found thatT; =2.531 and the
percentage error of our estimate é§(T.)=11.542%, ap-

proaching the percentage error reached using seven consecu-v=ag+a,(n)A2,

tive approximations td [11].

We should point out here that the authorg 1] did not
attempt to calculat& . for the 3D Ising model, where the
best known "exact” numerical value of the critical tempera-
ture isT,=4.51[12]. We obtainedT; =4.712 att* =1 and
d=3. The percentage error & (T.) =4.47%. For the opti-
mizedt* = 1.5515 our estimate of; =4.548 with the error
equal to 0.838% is quite accurate.

It is worth noting that, in principle, the parameter
x=1/d may be considered as “small” fod=3 and the ex-
pressions forT(x) can be expanded in powers ®f thus
presentingT. in the form of “1/d expansion.” We per-
formed the same renormalization procedure as above for

2
Teo(X)=2—x—

EY
= ) 2x? X3
c3(X)=~ XT3 T 1
and found that in 2D for t*=1,T:=2.453 with

€5(T.)=8.109% and in the 3D case witff =1, we have
T*=4.701 with €% (T,) =8.109%.

For the optimizedt* =1.241 andd=3, T} =4.624 and
€5 (T.)=2.527%. We see that the renormalized &kpan-

for critical indices# and v were obtained in the form

(n+4)(n+2)

n=by(n)A?, bz(n)zm,
1 _(n+4)(n+2)
%7 2= g7

(63

wheren is the number of the components of the order pa-
rameter.

The corrections to the mean-field values given by (68)
are about 2 orders of magnitude too small. The authors of
[13] had noticed that the results are strongly influenced by
the ¢® interaction and remain too distant from the analyzed
* behavior. This conclusion agrees well with the rigorous
results of[14] where it was shown that special Gaussian
pointsn= —4,— 2 should appear when th#’ model is con-
sidered, while for the/* model only the poinh=—2 exists.
Appearance in the expressior{63) of the combination
n+4 signalizes that the critical indices in the interesting
physical regionn=0,1,...,3 areinfluenced by the point
that does not have any meaning for té model at all.
Nevertheless, the Gaussian paint —2 does have physical
meaning for thay* model[15—17 and, formally, the results
given by Eq.(63) are correct ah= —2. Therefore, one may
hope that a systematic and pernicious influence of the point
n=-—4 can be weakened by some renormalization proce-
dure, at least when a physical region not very distant from
the pointn=—2 is considered. We should stress also that
the expressions in Eq63) do not obey another rigorously
studied limit of the LG Hamiltonian, whem—~, i.e.,

sion gives by order of magnitude the same accuracy that ig(n—=)#0 and »(n—«)#1 [18]. Therefore we do not

reached from the renormalized original expressions.

expect that a successful renormalization of &f) could be

One can conclude from the results presented in this sed¢ealized forn very distant from the poino= —2.
tion that both the rate of convergence and accuracy of the Our approach to the renormalization gfand » should

VCE are greatly improved by applying the self-similar renor-

vary, since for the index the two terms in thél expansion

malization to the starting VCE approximations. The situationare available and the renormalization could be carried on

encountered while renormalizinf, was somewhat simple,

straightforwardly, while for the index only single term was

since we possessed three reasonable approximations febtained and it is not possible to proceed with extra assump-

renormalization and also knew the exact valuél gffor the

tions.

2D Ising model. In the next section we meet the case when Write down the two consecutive approximations to the
the number of terms available are not sufficient for any variindex » in powers ofA:
ant of renormalization discussed above and no exact value

for the quantity under consideration is known.

V. RENORMALIZATION OF SHIFTED-POWER
EXPANSIONS

In this section we apply a modified variant of the self-

similar renormalization to the “shifted-power expansions”

Vo(n) = aOv
vy(n)=ag+ay(n)A?,

and apply the same procedure that leads to the expression
(47) with a substitution ok to A2. We also retain in the final
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expression for the renormalized critical indek an effective - 5(N)
time t*, which will be exploited as an optimization param- n* :bAEXP[ p 4 *]-
eter:
This yields
* *) — aZ(n) 2¢% ~
v (A,n,t )—aoeXD{ o At ] (64) 7* =7* —bA=t*b,(n)(e—1)AZ

At t* =1 the results still remain too small. Imposing an
additional optimizing condition on* by analogy with the
case ofy, that * should equal 0.026, where the critical
index » for the random walk problem is taken frgr20], we
find thatt* =44 and

Setting hereA=1 andt* =1 we see that no considerable
effect was achieved and the indexremains in the interval
v=0.5-0.509 whilen varies fromn=—2 to infinity. Im-
pose now an additional condition that in the casenefO,
corresponding to the random walk probl¢h®], the approxi-
mation cascade trajectory passes through the value of the 7 (n=14*)=0.038, 7*(n=2*)=0.048,

critical index v=0.588 known approximately, but with very

high accuracy for this physical problef80]. The choice of 7* (N=3t*)=0.057.

this point for optimization of the trajectory is dictated also by '

the desire to receive renormalized values for the physically These results overestimate especially fom=3, but are
interesting regiom=1,2,3 of “true” phase transitions using mych more realistic than the initial valug~10"4—10"3.
information only from the physically distant region, where Thjs systematic error can be understood if one notices that
the random walk problem may be a good choice because Hready the initialA expansion does not obey the limit of
does not correspond to a “true” phase transition, but only o, and 7(=)=0.002 instead of zero. This systematic

formal analogy exists with the— 0 limit of the LG Hamil-  geyjation cannot be fully corrected by a variational renor-
tonian. - ~ malization procedure. The same is true in the case of index
So, from the conditionv3(1,04*)=0.588 we obtain Kyt in this case more information is available from the
t* =59 and the following values at=1,2,3: initial A expansion and the results of renormalization remain

reasonable even at=3.
v5(1,1t*)=0.633, v5(1,2t*)=0.676, We conclude that by applying the self-similar renormal-
ization to theA expansion for the critical indices, one can
V3 (1,3%)=0.715. obtain reasonable estimates fgrand v, although further

improvement of these estimates does not seem plausible,

Th [ bl d h since initial expressions violate an exact relation in the
ese values are reasonable as compared to the expefi-, . |imit and possess an unphysical Gaussian point at

ment, high-temperature series, and Borel-summation resulﬁ:_4 In the next section we discuss the case when both
[21]. We should point out that only by means of a single imits a.tn=—2 andn— o are violated

parameter we obtain simultaneously renormalized values for
the physically interesting situation, i.e., a systematic multi-
plicative error in the initial expansion, caused by peculiari- VI. IMPORTANCE OF ASYMPTOTIC PROPERTIES

ties of theA expansion can be eliminated by a single renor-  \we have seen in the previous section thatAhexpansion
malization step. _ _ . mimicking the widely accepted Wilsoniexpansion is, in the

It is also possible to find optimaf* from the condition  pest case, a crude approximation for the critical indices,
restoring the correct value ofatn— o, where, as is shown  since an importan— limit is violated already in the start-
rigorously,»=1. In our case, the results happen to be muchng terms of theA expansion. The question naturally arises
better than for the initiab expansion, but still largely un- \yhether thee expansion obeys exact limits for critical indi-
derestimater, e.g., athn=0,0* =0.544. Nevertheless, this ces, namely, ah=—2 andn—c. The discussion of this
variant of optimization is of general interest because ofteryyestion for all critical indices will be presented later. In this
the limit n—co (or d—c) is well known. section, we consider the Wilsanexpansion for the critical

In the case of the index one should proceed differently, jndex 5. discuss itsn=—2 andn—s limits, observe that
since only a single term in tha expansion is known: we  they are violated, and suggest the self-similar renormaliza-
added to the expression fgrthe term linear il with some  tjon approach allowing one to restore the correct limiting
yet unknown positive coefficiert defining thus a new quan- ajyes for the inde.
tity 7. Then carried out the renormalization procedure for consider the well-known Wilsore expansion for the

7, repeating the steps leading to H§S). From the renor-  critical index & [1,18] up to the quadratic terms iet
malized quantity »* using the variational condition

dn*1db=0, we determineb as a function ofn,A,t*. Fi- ) 1 n?+14n+60
nally, we subtracted the terfmA from 7* to find %*. Fol- 0=3+etcy(n)e’, c(n)=3 Tnt8?Z (65
lowing this prescription define

_ At n=—2 andn—«, §=4.5. From the exact results for the
7=bA+by(n)A?, n=—2 vector model[16] and from the scaling law for
d=3 the result6=5 follows. The same valug=5 was
and then find obtained in the case of the spherical modet{>,d=3)
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[18]. The percentage error for the critical indéxin these
limits is therefore —10%. In the physical region
n=0,1,...,3 thee expansion give®$=4.47—4.46. Unfor-
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renormalization of I expansion and of the expansion
around lower critical dimension tw@n powers ofd—2) is
considered.

tunately, there is not much experimental data or theoretical

estimates available for the indeX but if we accept the
scaling laws as correct and estimate from these value® of
another critical indexn=(5—46)/(1+ ), which is much

better known, both experimentally and theoretically, then we

appear in the physical region with~0.1, that largely(by
three time$ overestimatesy. One may think that the index
6 is underestimated by the Wilsanexpansion. So, we nee
by means of the self-similar renormalization procedure t
continue the asymptotic expressi@f5) to the region of
e~1 with simultaneous restoration of the incorrect limiting
values atn=—2 andn—v. Introduce the following con-
secutive approximations to the quantify 6— 3:

'51( €)=c¢€,

5,(€)=€e+Cy(N)€?. (66)

By repeating the same steps that led us to(Ef), we obtain

€ 1+s

1-cyel(1+5)

55 (e,5)=

and

1+s

=3+

(67)

€
1-cyel(1+5)

Setting in Eq.(67) e=1 andn=—2 , orn—oo, it is easy to
show that only fors=0 both limits can be satisfied. There-
fore

€

5* +1_Cz(n)€

3

(68)
The expressiori68) in the physical region gives the values
5*(n=0)=4.882, &§*(n=1)=4.862,

8*(n=2)=4.852, & (n=3)=4.847.

The index#, corresponding to these values, can be easily

obtained from the scaling law:
n(n=0)=0.02, »n(n=1)=0.024,
n(n=2)=0.025, #(n=3)=0.026.

These results better agree with the general understanding

VII. INVERSE LARGE COMPONENT EXPANSION (1/N)
AND EXPANSION IN POWERS OF d—2(2+¢€)

The largen expansions(l/n expansioh [18,22 and e
expansion around the lower critical dimension twib—2
expansioh [23] had raised high expectations as an alterna-

d tive to the Wilsone expansion and field-theoretical approach
42]. Nevertheless they had never became competitive, re-

maining a useful guide to the region of largeand a good
qualitative tool, when different aspects of the two-
dimensional behavior are considered. It is clear that the val-
ues of critical indices given by d/and thed—2 expansion
do not obey then=—2 Gaussian limit, becoming divergent
atn=0 andn=2 (d=3), respectively. Therefore, it is not
possible to get a reasonable estimate foand 7 in the
physical regiom=1,2,3 lying too close to the spurious pole
and too far from the correat—c limit, supported by both
expansions.

Consider the 1 expansion for the critical indey:

5 24
Y= —;zﬁ,

from where
v(n=1)=-0.432, y(n=2)=0.784, y(n=3)=1.189.

Correspondingly, the two approximations in powers af 1/
can be written as

70(”) = 2!
y1(n)=2—24/7n.

Proceeding in accordance with the self-similar renormal-
ization prescriptions, the multiplien,;(n,s) can be found:

1 12s—-1
my(n,s)= 2 an

o (69

As is seen, the minimum dim;(n,s)| for n=2 is reached
for s—o. This gives

5 ()2 12
vi(n)=2ex g

and, correspondingly,

¥1(n=2)=1.089, »7(n=3)=1.334.

of We see that fom=3 the value given byy; becomes

7 as of a small index and are much closer to the results ofeasonable, deviating from the result of the Borel summation

the Borel summation than the initiaJl=0.1, obtained from
the e expansion(65) and the scaling law.

We conclude that the application of the self-similar renor-

malization improves the Wilsos expansion for the index

v=1.386 [20] with the percentage error equal to
—3.752%, while the initial T expansion has the percentage
error of —14.214%. Fon=1, the minimum ofmy(n,s)| is
reached fors=5.633; correspondinglyy; (n=1)=0.508.

S both qualitatively and quantitatively. This example stressesVe observe that fon=1,2 the results are improved if com-
once again the importance of obeying different reasonablpared to the initial Il expansion.

limits in the expressions for the critical indices. Another il-

The 1h expansion for the critical index is given as

lustration is given in the next section where the self-similarfollows [18]
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8 8\% 1 20 75 (n=0)=0.015, 75(n=1)=0.02,
T~ 3720 \3) 7 (70

75(n=2)=0.023, 7%(n=3)=0.025.
This equation becomes singular at=0 and negative at . .
n=-2, so that, despite its correct by design behavior at 1h€ values of multipliers in these cases are
n—o, the values given by E¢70) atn=1,2,3 are too large:

(y.§)= 1+ b2+s
my(y,S)= —a =Y
7(n=1)=0.076, 7(n=2)=0.086, 7(n=3)=0.068. 2 alts

The direct application of the self-similar renormalization us- Ma(y.S) =My (y,s)+ c 3+s ,
ing 1/ as a renormalization parameter with sty STy 1v sy

8 1 8 1 (8\%1 1 These values are very close to each other, e.g., for
M=3.2h M3 2507\3] 74n2 n=3, my,=1.022, andm;=1.037. From the stability view-

point the corresponding approximations are almost equiva-

as consecutive approximations does not improve the situdent. It is also possible to improve results fgrby applying
tion, since the influence of singularity at=0 is too strong. the second self-similar renormalization, as in the recurrence

To avoid this divergence, we reexpanded the expreggign ~ relation (35). This givesz* in the form of a continued ex-
in powers of the parametgr=(n+2)/(n+8)2, expressing Ponential[24]
n as a function ofy: b c
* = —_— p—
7t =ay exp{ayexp{ 5 y)

n:;(1—16y+ V1—24y). (71
y so that
This choice of the reexpansion parameter is not unique, but 7*(n=0)=0.016, 7*(n=1)=0.024,
the combination 1§+2)/(n+8)? frequently appears in the
Wilson e expansion. Such a transformation restores the cor- 7*(n=2)=0.03, %*(n=3)=0.032.
rect value ofy at n=—2 and also keeps intact the correct
limit at n—cc. Up to the third order iry we obtain: These values, especially far=2,3, are quite reasonable.
The results forn=0, not surprisingly, remain too small,
) 8 112 since we used for the renormalization procedure only the
n=ay+by*+cy’, a= 3,20 b=32 largen expansion, obviously lacking information about the
limit for small n. In order to weaken the influence of the
1856 14336 particular way to define coefficientsb,c, it is possible to
c= 372 278 proceed with a variational-optimization procedure, consider-

ing »* as a function of two unknown parametexs and

Thus the following consecutive approximations may be writ-determining them from the conditions
ten as

an 0 an* o
m(y)=ay, ga b
n,(y)=ay+by?, For the particular choice
73(y) =ay+by*+cy’. 7 —ayexd Sy——— |
a  1-(c/b)y

Proceeding in the usual manner, we obtain
we find thatz* =4ecy? and

b
nﬁ(y)=ayexp(5y>, (72) 7*(n=0)=0.019, 7*(n=1)=0.032,

c 7*(n=2)=0.04, %*(n=3)=0.043.
*(y)=(ay+by? exp(— 2). 73
73(y)=(@y+by’) a” 73 The e expansion withe=d—2 around the lower critical

dimension for the critical index is written in the form
Returning to the initial variable we have

) (d—2)2
75 (n=0)=0.013, 75(n=1)=0.016, v r=d—-2+ — (74)
75 (n=2)=0.018, 75(n=3)=0.019, ford>2 andn>2. Atn=3,d=3,v=0.5, giving rather crude

estimate coinciding with the mean-field result. The self-
and similar renormalization using as a parameter for renormal-
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ization does not improve this value, because~ in the limit at n—cc. Such a situation is similar to that of Sec. V,
starting pointd=2,n=3. On the other hand, at—o,d=3,  but no nonphysical Gaussian points will be present.
formula (74) gives v=1, i.e., the correct limiting value

known rigOl’OUSly for the Spherical model. ReeXpanC{iﬁ@ VIIl. SELF-AVOIDING WALK PROBLEM
in powers of 1h around this correct value we obtain (N+2 EXPANSION FOR N=0)
B 1 1 Interesting properties of the LG model far=—2 have
v l=1+—+2—5+--. (75 ; ;
n_ “n2 : been analyzed in a number of works4—17. Physically,

n=—2 corresponds to a Gaussian polymer with the expo-
Proceeding in accordance with the standard prescription angentsy=1,7=0,v=1/2. From the scaling laws id=3 one

using 1h as a renormalization parameter, we define can see that=3,6=5,8=3. It seems natural to develop
expansions in powers of+2 (n+2 expansioparound this
vo =1, well-defined limit [16]. To our knowledge, this idea has
never been put into practice. The task of obtaining the
v[l(n)=1+ 1/n. n+2 expansion is simplified if we note that the Wilsen
expansion for the critical indices,n,v,a,8 obeys the
Then, we readily obtain fory (n) the expression n=—2 limiting values. In order to obtain the+2 expan-
sion we simply reexpand the Wilsanexpansion at=1 in
* o F{ 1) powers ofn+ 2. Of coursen+ 2 expansion could be derived
vi(n)=exp — = S -
also from the “first principles” in a way similar to the

expansion, or the i/ expansion. The nearest to the point
and v; (n=3)=0.717, giving a reasonable estimate for then=—2 physically interesting case is locatednat 0, corre-
critical indexv. The percentage error, when compared to thesponding to the self-avoiding walk problem equivalent to a
result of the Borel summationv=0.705 [20] equals polymer. We believe that the case of the order parameter
1.702%, while for the initiald—2 expansion it equals dimensionality oin=—2 andn=0 are closely connected in

—29.078%. a way similar to the connection existing between the space

For the critical indexy, thed—2 expansion has the form dimensionalitiesd=4 and d=3, with the only difference
[23] being that thes expansion is substituted by time- 2 expan-

sion. We apply below the self-similar renormalization to the

n=a(n)(d—2)—b(n)(d—2)? n+2 expansion for the critical indices, presenting only the

results forn=0. The values of the critical indices are not as

n—-1 good forn=1,2,3. The expansion parameter is too large in
a(n)= n-2' b(n)= (n—2)§' the latter cases and also the-c limit is violated, so that

the trajectory strongly deviates for largerfrom the correct
At n=3,d=3, this givesp=—1, in disagreement with all but distant starting point.
that is known about this index. Up to the second order ig, the critical indexv is given
We use belowd—2=¢ as a renormalization parameter, as
since atd=2,7=0, being a reasonable starting point for the

trajectory. Define the following approximations ip B } n+2 n+2 ) 5
V= 2+4(n+8) €+ 8(n+8)3(n +23n+60)e°. (76)

n1(€,n)=a(n)e,
Set heree=1 and expand Eq76) in powers ofz=n+2, up

n2(€,n)=n1(€,n)—b(n) €. to the third order terms im:
The multiplier my(e,n)=1—[b(n)/a(n)][(2+s)/(1 1
+5s)] e reaches its minimum a— o, therefore v=5+azt a,z’+agz’,
. b(n)
75 (€,n)=a(n)eex _a(n)e , _5 B 1 _ 7
41796 277 ges T 386

and»3 (1,3)=0.135, which is a considerable improvement if _

Compared t07]: —1 from thed—2 expansion_ The fO”OWing approximations to the quantihy= V_%
We conclude that the self-similar renormalization im- can be readily written down:

proves the quality of estimates also fonHndd—2 expan-

sions, achieving quantitative agreement with other ap- vi(2)=a,2,

proaches. However, the brokern=—2 Gaussian limit still _

makes the possibilities of improving the results very narrow, vo(2) = a2+ a,7%, (77
usually an improvement is achieved for=3, but not for

lower n. V3(2)=a,z+a,z%+asz>.

In the next section we consider an opposite case of an
expansion obeying only the= —2 limit, but with a broken  Following the standard way, we find the multipliers
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a, 2+s The critical index» has the followinge expansion, up to
my(z,s) = 1+a—l 172 the third order:
ag 3+s , n= n+2 > €2+ n 7(272+56n—n?) €3, (82
m3(z,s)=m2(z,s)+a—2mz . (78) 2(n+8) 8(n+8)

and the corresponding+ 2 expansion, up to the third-order

Both multipliers at the poink=2 (n=0) reach their mini- terms, can be obtained:

mum at s=0, where m,(2,0)=0.911, m3(2,0)=0.444.
Consequently, the trajectory restored using all three approxi-
mations from Eq(77) will be more stable than that restored

from only two approximations, both trajectories being stable.

n= alz+ a222 + a323,

c . 25 23 43

The evolution integra(12) gives = - -

orall2) g 17860 %277 2502 731104

vz(z)zalz1 (ay/a))z’ Thus, the following approximations result:
—_— n1(2)=2a;2,
T (2)= v2(2)
T [1-2(as/ad) (2] 72(2) =212+ 2,2%,

and v} (z=2)=0.6,v% (z=2)=0.588. The former value is n3(2)=a,z+a,z>+azz°.

exactly the Flory “mean-field” exponen5], and the latter

is the same as the Borel-summation result, considered as tAde multipliersm,(z,s) andms(z,s) atz=2 satisfy the con-
best known estimate for polymef0]. The latter value dition [my(z,s)|<1,ms(z,s)|<1 for arbitrarys, the former
v =0.588 should be trusted more, since it is obtained movsatisfying the conditionm;(z,s)|=0 ats=0.586, the latter
ing along the more stable trajectory thah. It is encourag- becoming minimal as=0. Thus, we find

ing that the Flory and field-theory results, in our consider-

ation, come out as successive approximations. 75 (2)=a,z 1
The Wilsone expansion for the critical indeg, up to the 2 ¥l1-[ay/a(1+9)]z}t*s
second order irE, is
1 3 +2)(2n+1) 25 (2)= 72(2)
(2027l . (g " 1= 2(a /ad) ma 0T

B= 2 28T 2(n+8)°
with 75 (z=2)=0.03473 (z=2)=0.023. The former value
is very close to the so-called unconstrainedexpansion
(#=0.031+3 [26]) and the constrainede expansion
(7=0.0320+ 25 [26]). The latter value approaches closely

So, then+2 expansion, up to the third order, becomes

B=ag+a z+a,z’+azz’,

1 5 1 1 the result of Borel summatiom=0.027+4 [26]. The scal-

== - - - ing law 3v(1+7)=pB is ideally satisfied with our
%77 M7y HTger BT i3y 2 ;

v3 =0.588,73 =0.023, andB} =0.301. It is also worth not-

ing that a nonoptimal but stable trajectory for

This results in the following approximations f@: 7 (25— ) = no(2)extl(as/a)z] leads us to the point

Bo(2)=ag, 73 (2,2)=0.027, which is exactly the value of the Borel
summation.
B1(z)=Bo(2) + 2,2, The e expansion for the index, up to the second order,

(800 nhas the form
2)=B+(2)+a,z?,
Bo(z)=B1(2)+a, 142 -

Ba(2)=Bo(2) + 257>, = e €T am+ e

2+22n+52)€ (83

The multipliers my(z,s),m,(z,s),mz(z,s) for z=2 reach and then+2 expansion, up to the third order, is
their minima at s—ox; so that my(2,%)

<m,(2,,2)<my(2,). The evolution-integral solution for _ 3 :1 :_i
ﬁ;‘(z) is Y 1+alz+a3z y a; 72 as 216"
. az _, The multiplier atz=2 acquires its minimum value a&=0
BS(Z):EZ(Z)eX a_OZ ’ (81) and

a;z
2as/a;)z

and 83 (z=2)=0.301. This coincides with the result of the
Borel summatiori20].

7?5(2):[1_( 2]1/2+1
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with y3(z=2)=1.165, and with the percentage error found that it does not obey these limits for the critical indices

€3 (y)=0.345% as compared to the results of Borel summad,y,«, andv. _ o
tion [26]. Moving along a nonoptimal but stable trajectory ~We have seen in Sec. VI that for the critical indéboth
with S—00, we come to  yi(z,5—%) limits are violated with a percentage error equa-a0%.
=a,zexf(as/a)?]+1, which vyields the value The critical indexy [see Eq.(83)] does obey ther=—2
y%(25—%)=1.161, in complete agreement with the Borel limit, but atn—o,y=1.75, and the percentage error equals
summation[20,26. The scaling laww(2— 7) =y gives for _—12.5%, when compared with the exagt 2._ T_he critical
v=v},7=7n% the valuey=1.162. The percentage error in index « [see Eq.(84)] obeys then=—2 limit, but at
this case equals 0.258%. n—oo, &= —0.75, instead of the exaet= — 1, with the per-

For the critical indexe, the e expansion, up to the second CeNtage error—25%. The critical indexv [see Eq.(76)]
order. reads obeys then=—2 limit, but athn— o0, »=0.875, with the per-

' centage error—14.286% when compared to the exact

4—n (n+2)2 5 v=1. Clearly these discrepancies should lead to an uncon-
= omte) € 4(n+8)3(n+28)6 (84 trolled error within the physical region=0,1,2,3.Fortu-
nately, the last two indiceg and 8 [see Eqs(82) and(79)]
and then+2 expansion, up to the third order, reads do obey then=—2 andn—c limits: =0 atn =-2,
n—o andB=1/4 athn=—2, andB=1/2 atn—oo,
1 2 3 Compare, in the physical region, the valuessof, «, and
a= 5 Tz &z T ass, v obtained froms and 8 by means of the scaling laws with
those obtained by the direct use of the Wilsoexpansion.
1 1 1 The percentage deviation from the initial Wilson expansion,
Q=g 2Tz35 BT 1o for the index & is [in this section, in order not to cause

confusion, we use the letteE" instead of the lettek in the
For the quantitye=3— a, with the set of approximations  formula (59)]

a(2)=a,2, E(6,n=0)=7.7%, E(5,n=1)=7.21%,
@(2)=ay(2) +a,2%, E(6,n=2)=7.06%, E(8,n=3)=7.082%.
w3(z)="a,(2) +a37%, For the indexy,
following the conventional prescriptions, we find the solu- E(y,n=0)=0.7%, E(y,n=1)=1.97%,

tion corresponding to the most stable trajectory veithO:
E(y,n=2)=3.27%, E(y,n=3)=4.49%,

()= ay(2)
T [1-2aglad) @)

the error increases considerably with while atn=0 the
correct limitn= — 2 still favorably influences the results. For

andaj (z=2)=0.217. The field-theory Borel summation re- the indexa we have

sults are not available. From the scaling law (2— «)/3, E(a,n=0)=—0.214%, E(a,n=1)=—20.36%,

we find that the valuev=0.594, corresponding tej ,

within the percentage error of 1% agrees with the Borel E(a,n=2)=168.95%, E(a,n=3)=52.19%,

summation and our own estimate for Therefore, our esti-

mate fora may be considered satisfactory. again being negligible fon=0 but growing withn. For the
The critical indexs, with then= —2 limit violated by the  index » we get

Wilson e expansion, was estimated in Sec. VI. We found that

8(n=0)=4.882. Theoretical field Borel summation data are E(v,n=0)=1.67%, E(v,n=1)=3.13%,

not available for comparison. From our estimafg=0.023

and the scaling relations=(5—7)/(1+75), we obtain E(v,n=2)=4.52%, E(v,n=3)=5.75%.

6=4.865, and within the percentage error of 0.349% both

our estimates agree. We see that only ah=0 the results possess a reasonable

We believe that both good and reliable estimates can b@ccuracy, and the quality of the Wilsenexpansion is good
obtained only from expansions possessing correct limits bnough to reach, e.g., by means of the2 expansion(see
design. Examples of such behavior are given byetlegpan- ~ Sec. VI, the quality of the best known estimates.

sion and field theory expansion in powers of an interaction We conclude that all attempts to improve the critical in-
constant. dices d,y,a,v for n=1,2,3 directly from the Wilsore ex-

pansion will leave us with an uncontrollable error. It seems
IX. APPLICATION TO € EXPANSION rgasonable to renormglize self—similafly only the critical in-
dices» and 8 possessing correct limiting values and to cal-
In accordance with all our previous remarks, concerningculate all other indices form the scaling laws.
the importance of the correct limits at= —2 andn—«, we For the indexzn [see Eq(82)], usinge as a parameter for
considered the well-known Wilsor expansion[1] and renormalization, the following approximations are available
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n+2 y=ay, ag=1,
7]2(6):612(”)62, az(n):m, Bole 0 0

3
72(€)= mo(€)+ag(n) €2, B1(€)=Bo(€e) +as(n)e, al(n):_—Z(n-i-S)’

n+2 _ ) :(n+2)(2n+1)
as(n)zm(272+56n—n2)- Bao(€)=pB1(e)+ax(n)e”, ax(n) W_
. _ . The multiplier

The multiplier mg(n,s) at e=1 is always minimal at
s—o, therefore a;(n) 1+s ay(n) 2+s
my(n,s)=1+ e+ €?
ay(n) aga S ag S
* — 2 *

73 (€)=az(n)e exp{ a,(n) et ] (89 s equal to zero ab=—(2a,+a,)/(ay+a;+ag), and the

evolution integral gives

Bi(e) 1
P [1—(Za§/S)aa(1+S/2),Bi/S(6)]3/2.

Fort* =1 we obtain

B (€)= (86)

75(n=0)=0.045, 7%(n=1)=0.051,

74(n=2)=0.052, 7%(n=3)=0.05. From here, at=1,
o B5(n=0)=0.313, B5(n=1)=0.333,
These values are probably too large. The situation may be
improved if Eq.(85) is optimized using the knowledge of the B5(n=2)=0.35 B%(n=3)=0.364.
exact7=0.2083 fore=2,n=0 (2D random walks[27].
Setting 73(e=2n=0t*)=0.2083 we find that The formula(86) is applicable only up ton=42, where
t*=0.567 and s—0 and Eq.(86) becomes undefined. Foe=42, the expo-
nential summation is optimal:
73(n=0)=0.029, #3(n=1)=0.033,
ax(n)
€
ch

B§(6)=B1(e)e><p( ) n=42.

75(n=2)=0.034, 7%(n=3)=0.034,

in perfect agreement with the best estimates by the Bore'I:or n=23, B almost coincides with the Borel summation
summation[20]. If t* is optimized from the knowledge of values 0.346 2 and 0.365: 2, respectively, being larger for

the 2D Ising model exactn=0.25, then similarly, gzgé}:’lwree;p?e::?i(\a/ei/orel summation gives 0. and

* . ) .

t*=0.603 and The € expansion was obtained also from the theoretical
field approach up to the fifth order n[28]. For the critical

* — — * — —
73(n=0)=0.03, #»3(n=1)=0.034, index v, up to the second order ia, one has

75(N=2)=0.035, 7%(n=3)=0.035. V=v"l=a,(n)+a;(n)e+ay(n)e?
There is also another way to get information from the a(n)=2, ay(n)=— n+2
expansion for the index. Proceed similarly to the case of a r n+8’
the 1h expansion, and reexpand E(B2) in powers of
y=(n+2)/(n+8)? (ate=1). Then, up to the second order (n+2)(13n+44)
in Y, aZ(n): - 2(n+8)3 ’ (87)

3 ) the limits n=—2 andn—o being satisfied, in distinction
n= §y+ 9y from the originale expansion. We use the following approxi-
mations to the quantity/=—V+ag(n):

and 7% = 3y exp(24y), with ~
75 = 5y exp(24y) Vi(e)=—a(n)e,

5 (n=0)=0.025, 7%5(n=1)=0.034, =
72(n=0) 72(n=1) Vale)=—ay(me—ax(n) €2 9
75 (N=2)=0.039, 75(n=3)=0.042, All terms in Eq.(88) are positive and the optimal renormal-
ization corresponds te—. The evolution integral can be
still in good agreement with a set of data available for thereadily calculated, giving
critical index 5 [21]. )
S ) ) _ a-(n
Fgr th_e critical indexB, Eq. (79) defines the set of ap V3 (€)= —ay(n)eex 20 (89)
proximations ai(n)




55 ALGEBRAIC SELF-SIMILAR RENORMALIZATION IN ... 3997

We found that at* =1,e=1, W,(g)=—g+g?,
v4(n=0)=0.607, v4(n=1)=0.655, W;(g) =W,(g) —as(n)g?,
v5(n=2)=0.698, v}(n=3)=0.736. ay(n)= 6.074 074 (08+82)§-148 14815 (@0

n+

Similarly to the case of the index, the self-similarly E h . _¢ find th ion f .
renormalizede expansion for overestimates the critical in- rom the equatioV,(g) =T we find the expansion function

_1 : P
dex, as may be seen from the comparison with other result&) = 2(1+ y1+4f). The points of the approximation cas-
[21]. Let us optimize the expression fof using the knowl-  cade trajectory are

edge of the 2D Isingv=1 [29]. From the condition yo(f)=f
v5(e=2n=1t*)=1 we findt* =0.576 and the optimized
values

ag .
ya(f)=ya(f) = ox*(f).
v3(n=0)=0.59, v5(n=1)=0.628,
For the velocity field we get

v5(N=2)=0.662, v%(n=3)=0.691. .

_ v3(f)=—§3x3(f).
Compared to the best known calculationszofrom the

Borel summation and similar methods, for=0,1 our esti-
mates practically coincide with them, and fo 2,3 the per-
centage errors are-0.451% compared tov=0.665 at
n=2 [30] and 1.003% compared to=0.698 atn=3 [30]. wag df

By analogy with Sec. IV, the evolution-integral solution for
W3 is obtained implicitly from the equation

It is interesting that by a single parameter optimization the =t*
index v is improved in the whole physical range. It is worth
noting thatt* used for optimization is about the same for ang the rootg* of the equatiorW? (g,n,t* =1)=0 is ob-
7 and v. Evaluation of the critical indices is also possible tained numerically, as a functiog* =g* (n). In the physi-
based on the field-theoretical expansions. Information is ObCaIIy important cases,

tained in the latter case from the perturbative series directly

W,(g)U3(f)

and the results are marginally sensitive to the way in which g*(n=0)=1.59, g*(n=1)=1.559,
the position of an infrared stable fixed point is determined
[20,31]. g*(n=2)=1524, g*(n=3)=1.491.

At n=-2g*=1.599 and atn—o,g*=1. The depen-

X. APPLICATION TO THE FIELD-THEORY EXPANSION dence ofg* (n) in the intervaln=— 2,0 is nonmonotonous, a
maximum is reached at= — 1, whereg* = 1.61. Our values
gre higher than the results $80], but remain within the
reasonable bounds and show the same tendency, at least for
n=0~. No data are available for comparison for
n=-—2,0.

For the critical index»n, keeping the starting two terms in
powers ofg, we can write down the approximatiofi30]

Theoretical field approach in the theory of critical phe-
nomena gives, probably, the most accurate and consiste
estimates for the critical indiceg andy [2]. The analysis of
the expansions in powers of the interaction constar{g
expansioh for these indices from the viewpoint of the lim-
iting casesn=—2,n—x, hecame possible only when tige
expansions have been written for arbitrary30]. By direct
inspection of the expr_egsions foy a_md v from [30], we 0.296 296 296 G+ 2)
found that then— < limit is obeyed rigorously ifg=1, i.e., 72(9)=by(n)g?, by(n)= 5 ,
7=0,y=2 and then=—2 limit is obeyed with very high (n+8)
accuracy for arbitraryg, i.e., =0, y~1 with the error in-
significant within the framework of the theory of critical in-
dices. bs(n)

The standard approa¢B0] uses, for computing the infra-
red stable fixed poing* of the beta functio'W(g), a com- 0.024 6840014+ 0.246 840014+ 0.394 944022 4
plicated Borel summation technique. Then critical indices ~— (n+8)3 '
are calculated a%(g*),n(g*). This approach requires a
number of terms in the expansions. We apply below the self- (91)
similar renormalization to only the initial three terms in the 5nq the evolution integral can be readily calculated resulting
expressions forw(g),y %(g),7(g) and obtain estimates in
with an accuracy comparable to the best known Borel sum-
mation results obtained from all known terms in the expan- . ) bs(n)
sions. 73(g,n)=by(n)gex b,(N) g

We construct the following set of approximations to 2
W(g) using theg expansion froni30]: and

73(9) = 172(9) +bs(n)g?,
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75(n=0)=0.027, 7%(n=1)=0.030,

73 (n=2)=0.031, 75(n=3)=0.031.

These values are practically the same as that quot&2idin
where the Borel summation has been
7(n=0)=0.026+3, 7(n=1)=0.031+4, 7(n=2)=0.033+4,
n(n=3)=0.033+t4. At n=4, 75 decreases to 0.03, the
same tendency is seen in the datd 3.
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At t* =1 we obtainy} (n=3)=1.37 and the percentage
error —1.154%. The same procedure appliedne0,1,2
always keeps the erra<1%. These results are quite accu-
rate, especially if one remembers that only the starting terms
were used. Unfortunately, the expressi®8) does not obey

usedthe n—o limit with a percentage error-3.7%. An optimi-

zation of the expressio®4) may be carried out requiring
that the limit y=2 atn—o be restoredsee also Sec. V
This aim is achieved with* =1.15 andy3 (n=3)=1.375

For the critical indexy we keep the three starting terms in with a percentage error 0.794%. An effective increase of

powers ofg:
G=y '=1+cy(n)g—cy(n)g?,

n+2
(n+8)%"

n+2

Cl(n):—m,

Cy(n)=— (92

The following approximations to the quanti@ =-G+1
are used:

Gi(g)=ci(n)g,

Ga(9)=G1(g) —ca(n)g?

The multiplier my(g,n,s)=1—[c,(n)/ci(n)](2+s)/(1
+s)g, calculated forg=g*(n), is always minimal for
s=0. The evolution integral gives

1
9T+ c(nylc(mg”

G5 (g,m=cy(n)
For y5 we obtain

y5(n=0)=1.166, v5(n=1)=1.239,

¥5(n=2)=1.305, v5(n=3)=1.363.

The percentage errors are,(y(n=0))=0.431%, as

t* mimics the effect of introducing higher terms into consid-
eration.

Xl. CONCLUSION

We suggested here a variant in the method of self-similar
renormalization permitting one to find effective sums of as-
ymptotic series. The advantage of the method is that it allows
one to get results exploiting just a few first terms of a given
series, when no other resummation techniques work. At the
same time, the accuracy of the results is not worse than that
reached in other known sophisticated techniques involving
about ten terms. In addition, our method in the majority of
cases makes it possible to present answers in the form of
simple analytical expressions that are easy to study for con-
sidering their dependencies on various parameters, including
asymptotic behavior with respect to these parameters.

The possibility of realizing a renormalization, having
available only a few terms of a series, is due to an algebraic
transformation that is equivalent to the effective increase of
approximation orders. That is why we call this variant the
algebraic self-similar renormalization.

The general idea of the self-similar renormalizatjidn-§
is to extract the maximum of information from the minimal
number of terms. Such a minimax criterion, certainly, can be
followed only with the help of additional functions, making
the convergence as fast as possible. These functions are
called control or governing functions, and they play the same

compared to 1.161 from the Borel summation: zero error asole as the control functions in the optimal control theory. In

compared to 1.24t2 atn=1;e,(y(n=2))=—0.836% as
compared to 1.316, ané,(y(n=3))=—1.659%, as com-

the algebraic self-similar renormalization, the control func-
tions are introduced into powers of an algebraic transforma-

pared to 1.386 from the Borel summation. In the latter casdion. The choice of these control functions is based on the
of n=3 we also constructed the set of approximations difrinciple of maximal stability by minimizing the absolute

rectly for the indexy, expanding Eq(92) in powers ofg, up
to third order:

y=1+di(n)g+dy(n)g?  dy(n)=—cy(n),
da(n)=ci(n)+cy(n). (93
Approximatingy =y—1 by
y1(n)=dy(n)g,
Y2(n)=71(n)+dz(n)g?,

and finding out that the multipliem,(g,n,s) is minimal at
s—o, we have
gt*].

dy(n)
dy(n)

7§(n)=d1(n)gexp[ (99

value of mapping multipliers.

We illustrated the effectiveness of our approach by renor-
malizing divergent series in the theory of critical phenomena.
Doing this, we especially restricted ourselves from using
many terms of perturbative series, which are sometimes
known—this is to emphasize that our approach is effective
when, really, only minimal information is available. Dealing
with higher-order terms needs a multiple repetition of the
renormalization procedure. This requires a slight generaliza-
tion of the technique and a more in-depth presentation. This
multiple renormalization is planned to be the subject of a
separate publication.

The method suggested is quite general and can be applied
to arbitrary divergent series. The choice of examples from
the theory of critical phenomena owes to the common inter-
est in this problem. We also stress that even for this problem,
where so much is known, our understanding can be im-
proved by, first, obtaining the results much easier, second,
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deriving analytical formulas, not involving heavy numerical efficient renormalization procedure. We hope we were able
calculations, and, finally, by restoring correct asymptotic beto convince the reader that the algebraic self-similar renor-
havior with respect to physical parameters, such as the nunmalization suggested can be such a tool for extracting quite
ber of components. accurate information even from bad and short series.
Another important message that we would like to bring up
is that one should not be afraid of simple perturbative series
that, being divergent, seem, at first glance, to be senseless:
Even a seemingly bad perturbative series contains quite a lot This work was supported by a grant from the National
of useful information that can be extracted by means of arScience and Technology Development Council of Brazil.
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